
Basics of Neural Networks and
Convolutional Neural Networks

Chetan Arora

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Perceptron

output = 1 if	 *
!"#

$

𝑊!𝑥! > 0

−1 otherwise

𝑊 = 1

𝑊 = 1

𝑇 = 1.5

𝑦

𝑥

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Perceptron

AND

𝑊 = 1

𝑊 = 1

T= 1.5

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Perceptron

AND OR NOT

𝑊 = 1

𝑊 = 1

T= 1.5

𝑊 = 1

𝑊 = 1

T= 0.5
𝑊 = −1

T= −0.49

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Perceptron: Linear Threshold Unit

𝑜𝑢𝑡𝑝𝑢𝑡 = 1 𝑖𝑓*
!"#

$

𝑊!𝑥! > 0

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑊 = 1

𝑊 = 1

𝑇 = 1.5

−1

𝑥

𝑦

𝑊 = 1.5

𝑊 = 1

𝑊 = 1

𝑇 = 0.0

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Perceptron

∑

𝑥%

...

𝑂𝑥&

𝑥$

𝑊%

𝑊&

𝑊$

*
!"#

$

𝑊!𝑥!

𝑥# = 1
𝑊#

𝑂(𝒙) = 1 𝑖𝑓*
!"#

$

𝑊!𝑥! > 0

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Decision boundaries
• In simple cases, divide feature space

by drawing a hyperplane across it.

• Known as a decision boundary.

• Discriminant function: returns
different values on opposite sides.
(straight line)

• Problems which can be thus
classified are linearly separable.

X1

X2

A

B

A

A

A
A

A
A

B

B

B

B
B

B

B

Decision
Boundary

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Decision Surface of a Perceptron
• Perceptron is able to represent some useful functions
• 𝐴𝑁𝐷(𝑥%, 𝑥&) choose weights 𝑤# = −1.5,	𝑤%= 1,𝑤& = 1
• But functions that are not linearly separable (e.g. 𝑋𝑂𝑅) are not

representable

+
+

+

+ -

-

-

-

Linearly separable Non-Linearly separable

𝑥&

𝑥%
+

+-

-

𝑥&

𝑥%

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Solution in 1980s: Multilayer Perceptrons
• Removes many limitations of single-layer networks
• Can solve 𝑋𝑂𝑅

• Exercise: Draw a two-layer perceptron that computes the XOR function
• 2 binary inputs 𝜉% and 𝜉&
• 1 binary output
• One “hidden” layer
• Find the appropriate
 weights and threshold

𝜉&

𝜉%

(0,1)

(0,0) (1,0)

(1,1)

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Different Non-Linearly Separable Problems
Structure Types of

Decision Regions
Exclusive-OR

Problem
Classes with

Meshed regions
Most General
Region Shapes

Single-Layer

Two-Layer

Three-Layer

Half Plane
Bounded By
Hyperplane

Convex Open
Or

Closed Regions

Arbitrary
(Complexity

Limited by No.
of Nodes)

A

AB

B

A

AB

B

A

AB

B

B
A

B
A

B
A

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Neural Networks: Two Perspectives
Find linear boundaries only, but
transform the data first in a way
that makes linear boundaries OK

Use nonlinear 𝑓(𝑥) to draw
complex boundaries, but
keep the data unchanged

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Neural Networks as Learning Representations
Input Layer

Hidden Layer

Output Layer

Handwritten images

+1
-1

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

What is this unit doing?
Input Layer

Hidden Layer

Output Layer

Handwritten images

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Strong positive weight

Low or zero weight elsewhere

What does this unit detect?
1 5 10 15 20 25

it will send strong signal for a horizontal
line in the top row, ignoring everywhere else

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

What does this unit detect?
1 5 10 15 20 25

Strong positive weight

Low or zero weight elsewhere

Strong signal for a dark area in the top left
corner

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

What does this unit detect?

Handwritten images

Vertical
Lines

Horizontal
Lines

Small
Loops

But what about position invariance ???
our example unit detectors were tied to

specific parts of the image

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

etc …

Successive layers can learn higher representations

detect lines in
specific positions

 v etc …
Higher level detectors
(horizontal line, “RHS
vertical lune” “upper
loop”, etc…)

1 5 10 15 20 25

 What does this unit detect?

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Scaling-up
• Challenges of practical image classification
• Must deal with very high-dimensional

inputs
• 1600×1200 pixels = 1.9m inputs, or
3×1.9m if RGB pixels
• Can we exploit the 2D topology of

pixels (or 3D for video data)?
• Can we build invariance to certain

variations we can expect
• Translations, illumination, etc.

Flower

1600 pixels

12
00

 p
ix

el
s

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Motivation: Recognizing an Image
• Input is 5x5 pixel array

• Simple back propagation net

Hidden Units Output

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Recognizing an Image with unknown location
• Object can appear either in the top image or in the bottom image location
• Output indicates presence of object regardless of position
• What do we know about the weights?

Hidden Units

Output

Hidden Units

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Recognizing an Image with any location
• Each possible location the object can appear in has its own set of hidden

units
• Each set detects the same features except in a different location
• Locations can overlap

Hidden Units

Output

Hidden Units

… …

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Key Ideas for a Usable ML Model for Images
Images:
1. Local Structure
2. Reusable Composition
3. Hierarchical

Must exploit each of them

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

CNN: Local Connectivity

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

CNN: Local Connectivity
• Each hidden unit is connected only to a sub-region (patch) of the input

image
• It is connected to all channels
• 1 if greyscale image
• 3 (R, G, B) for color image

Solves the following problems:
• Fully connected hidden layer would have an unmanageable number of

parameters
• Computing the linear activations of the hidden units would be very

expensive

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

CNN: Parameter Sharing
• Units organized into the same “feature map/template” share parameters
• In this way all neurons detect the same feature/template at different

positions in the input image
• Hidden units within a feature map cover different positions in the image

Feature map 1 Feature map 2 Feature map 3

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

CNN: Parameter Sharing
How does it help?
• Reduces even more number of parameters (compared to local connectivity)
• Will extract the same features at every position
• features are “equi-variant”

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

CNN: Parameter Sharing
• Each feature map forms a 2D grid of

features
• Can be computed with a discrete

convolution (∗) of a kernel matrix 𝑘!'
which is the hidden weights matrix 𝑊!'
with its rows and columns flipped:

𝑦' = tanh*
!

𝑘!'𝑥!

• 𝑥! is the 𝑖() channel of input
• 𝑘!' is the convolution kernel
• 𝑦' is the hidden layer

Feature Maps

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

CNN: Parameter Sharing
• Stride (typically denoted by s in CNNs) decides the spacing between

overlapping convolutions

• Helps in reducing parameters further

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Pooling or Subsampling Layer
• The pooling layers reduce the spatial resolution of each feature map. Helps

to collate the features in a region

• By reducing the spatial resolution of the feature map, a certain degree of
noise, shift and distortion invariance is also achieved.

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Jargon
• Convolutional Neural Networks
• also called CNNs, Conv Nets etc.

• Each hidden unit channel
• also called map, feature, feature type, dimension

• Weights for each channel
• also called kernels

• Input patch to a hidden unit at (x,y)
• also called receptive field

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Typical CNN
• Alternates convolutional and pooling layers

• Output layer is a regular, fully connected layer with softmax non-linearity
• Output provides an estimate of the conditional probability of each class

• The network is trained by stochastic gradient descent
• Backpropagation is used similarly as in a fully connected network
• We have seen how to pass gradients through element-wise activation

function
• We also need to pass gradients through the convolution operation and

the pooling operation

Backpropagation

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Backpropagation in General Cases
1. Decompose operations in layers of a neural network into function

elements whose derivatives w.r.t. inputs are known by symbolic
computation.

ℎ* 𝑥 = 𝑓(,!"#) ∘ ⋯ ∘ 𝑓
* $
, ∘ ⋯ ∘ 𝑓

* %
& ∘ 𝑓 % 𝑥

where 𝑓(,!"#) = ℎ*𝑓(%) = 𝑥

∀𝑙:
𝜕𝑓(,)

𝜕𝑓(,.%)
is knownand

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Backpropagation in General Cases
2. Backpropagate error signals corresponding to a differentiable cost

function by numerical computation (Starting from cost function, plug in
error signals backward).

𝛿 , = /
/0 $ 𝐽 𝜃; 𝑥, 𝑦 = /1

/0($'()
/0($'()

/0($)
= 𝛿(,2%) /0

($'()

/0($)

where /1
/0($!"#) is known

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Backpropagation in General Cases
3. Use back-propagated error signals to compute gradients w.r.t. parameters

only for the function elements with parameters where their derivatives
w.r.t. parameters are known by symbolic computation.

 𝛻* $ 𝐽 𝜃; 𝑥, 𝑦 = /
/* $ 𝐽 𝜃; 𝑥, 𝑦 = /1

/0($)
/0
*($)
($)

/*($)
= 𝛿(,)

/0
*($)
($)

/*($)

where
/0
*($)
($)

/*($)
 is known

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Backpropagation in General Cases
4. Sum gradients over all example to get overall gradient.

𝛻* $ 𝐽 𝜃 =*
!"%

3

𝛻* $ 𝐽 𝜃; 𝑥(!), 𝑦(!)

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Convolution as Matrix Multiplication

4 5 8 7

1 8 8 8

3 6 6 4

6 5 7 8

1 4 1

1 4 3

3 3 1

122 148

126 134∗

4 5 8 7 1 8 8 8 3 6 6 4 6 5 7 8
T

=

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Convolution as Matrix Multiplication

4 5 8 7

1 8 8 8

3 6 6 4

6 5 7 8

1 4 1

1 4 3

3 3 1

122 148

126 134∗
1 4 1 0 1 4 3 0 3 3 1 0 0 0 0 0

1 4 1 0 1 4 3 0 3 3 1 0

1 4 1 0 1 4 3 0 3 3 1 0

1 4 1 0 1 4 3 0 3 3 1

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Convolution as Matrix Multiplication

1 4 1 0 1 4 3 0 3 3 1 0 0 0 0 0

1 4 1 0 1 4 3 0 3 3 1 0

1 4 1 0 1 4 3 0 3 3 1 0

1 4 1 0 1 4 3 0 3 3 1

4

5

8

7

1

8

8

8

3

6

6

4

6

5

7

8

∗ =
122

148

126

134

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Backpropagation in Convolution Layer

𝑥 ∗ 𝑤 = 𝑦

𝜕𝐽
𝜕𝑥

= 𝑓𝑙𝑖𝑝 𝑤 ∗
𝜕𝐽
𝜕𝑦

𝑥 ∗
𝜕𝐽
𝜕𝑦

=
𝜕𝐽
𝜕𝑤

Forward propagation

Backward propagation

Gradient computation

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Pooling Layer: Subsampling Equations
𝑚

𝑥

𝑔 𝑦$
Pooling

𝑔 𝑥 =
∑4"%3 𝑥4
𝑚

𝜕𝑔
𝜕𝑥

=
1
𝑚

Mean Pooling

Max Pooling g x = max 𝑥
𝜕𝑔
𝜕𝑥!

= k1 𝑖𝑓	𝑥! = max(𝑥)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	

𝑔 𝑥 = 𝑥 5 = *
4"%

3

|𝑥4|6

%
6 𝜕𝑔

𝜕𝑥!
= *

4"%

3

|𝑥4|6

%
6.%

. 𝑥! 5.%𝐿5 Pooling

Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Backpropagation in the Pooling Layer

𝑚

𝑥

𝑔 𝑦!
𝑚

𝛿!
(#)

⁄𝜕𝑔 𝜕𝑥

Forward propagation (subsampling) Backward propagation (upsampling)

