Basics of Neural Networks and Convolutional Neural Networks

Chetan Arora

Chetan Arora Department of Computer Science and Engineering, IIT Delhi

Perceptron: Linear Threshold Unit

Decision boundaries

- In simple cases, divide feature space by drawing a hyperplane across it.
- Known as a decision boundary.
- Discriminant function: returns different values on opposite sides. (straight line)
- Problems which can be thus classified are linearly separable.

Decision Surface of a Perceptron

- Perceptron is able to represent some useful functions
- $AND(x_1, x_2)$ choose weights $w_0 = -1.5$, $w_1 = 1$, $w_2 = 1$
- But functions that are not linearly separable (e.g. *XOR*) are not representable

Linearly separable

Non-Linearly separable

Solution in 1980s: Multilayer Perceptrons

- Removes many limitations of single-layer networks
 - Can solve XOR
- Exercise: Draw a two-layer perceptron that computes the XOR function
 - 2 binary inputs ξ_1 and ξ_2
 - 1 binary output
 - One "hidden" layer
 - Find the appropriate weights and threshold

Different Non-Linearly Separable Problems

Structure	<i>Types of</i> <i>Decision Regions</i>	Exclusive-OR Problem	Classes with Meshed regions	Most General Region Shapes	
Single-Layer	Half Plane Bounded By Hyperplane	ABBA	B		
Two-Layer	Convex Open Or Closed Regions	A B B A	B		
Three-Layer	Arbitrary (Complexity Limited by No. of Nodes)	ABBA	B		

Neural Networks: Two Perspectives

Use nonlinear f(x) to draw complex boundaries, but keep the data unchanged Find linear boundaries only, but transform the data first in a way that makes linear boundaries OK

Neural Networks as Learning Representations

Handwritten images

What is this unit doing?

Hidden Layer

Input Layer

Output Layer

Handwritten images

What does this unit detect?

What does this unit detect?

Chetan Arora Department of Computer Science and Engineering, IIT Delhi

Successive layers can learn higher representations

Scaling-up

- Challenges of practical image classification
 - Must deal with very high-dimensional inputs
 - 1600×1200 pixels = 1.9m inputs, or 3×1.9 m if RGB pixels
 - Can we exploit the 2D topology of pixels (or 3D for video data)?
 - Can we build invariance to certain variations we can expect
 - Translations, illumination, etc.

1600 pixels

Flower

Motivation: Recognizing an Image

• Input is 5x5 pixel array

• Simple back propagation net

Recognizing an Image with unknown location

- Object can appear either in the top image or in the bottom image location
- Output indicates presence of object regardless of position
- What do we know about the weights?

Recognizing an Image with any location

- Each possible location the object can appear in has its own set of hidden units
- Each set detects the same features except in a different location
- Locations can overlap

Key Ideas for a Usable ML Model for Images

Images:

- 1. Local Structure
- 2. Reusable Composition
- 3. Hierarchical

Must exploit each of them

CNN: Local Connectivity

CNN: Local Connectivity

- Each hidden unit is connected only to a sub-region (patch) of the input image
- It is connected to all channels
 - 1 if greyscale image
 - 3 (R, G, B) for color image

Solves the following problems:

- Fully connected hidden layer would have an unmanageable number of parameters
- Computing the linear activations of the hidden units would be very expensive

- Units organized into the same "feature map/template" share parameters
- In this way all neurons detect the same feature/template at different positions in the input image
- Hidden units within a feature map cover different positions in the image

How does it help?

- Reduces even more number of parameters (compared to local connectivity)
- Will extract the same features at every position
 - features are "equi-variant"

- Each feature map forms a 2D grid of features
- Can be computed with a discrete convolution (*) of a kernel matrix k_{ij} which is the hidden weights matrix W_{ij} with its rows and columns flipped:

$$y_j = \tanh \sum_i k_{ij} x_i$$

- x_i is the i^{th} channel of input
- k_{ij} is the convolution kernel
- y_j is the hidden layer

- Stride (typically denoted by s in CNNs) decides the spacing between overlapping convolutions
- Helps in reducing parameters further

Pooling or Subsampling Layer

- The pooling layers reduce the spatial resolution of each feature map. Helps to collate the features in a region
- By reducing the spatial resolution of the feature map, a certain degree of noise, shift and distortion invariance is also achieved.

Jargon

- Convolutional Neural Networks
 - also called CNNs, Conv Nets etc.
- Each hidden unit channel
 - also called map, feature, feature type, dimension
- Weights for each channel
 - also called kernels
- Input patch to a hidden unit at (x,y)
 - also called receptive field

Typical CNN

- Alternates convolutional and pooling layers
- Output layer is a regular, fully connected layer with softmax non-linearity
 - Output provides an estimate of the conditional probability of each class
- The network is trained by stochastic gradient descent
 - Backpropagation is used similarly as in a fully connected network
 - We have seen how to pass gradients through element-wise activation function
 - We also need to pass gradients through the convolution operation and the pooling operation

Backpropagation

1. Decompose operations in layers of a neural network into function elements whose derivatives w.r.t. inputs are known by symbolic computation.

$$h_{\theta}(x) = \left(f^{(l_{max})} \circ \cdots \circ f^{(l)}_{\theta^{(l)}} \circ \cdots \circ f^{(2)}_{\theta^{(2)}} \circ f^{(1)}\right)(x)$$

where
$$f^{(1)} = x$$
 $f^{(l_{max})} = h_{\theta}$

and
$$\forall l: \frac{\partial f^{(l)}}{\partial f^{(l-1)}}$$
 is known

2. Backpropagate error signals corresponding to a differentiable cost function by numerical computation (Starting from cost function, plug in error signals backward).

$$\delta^{(l)} = \frac{\partial}{\partial f^{(l)}} J(\theta; x, y) = \frac{\partial J}{\partial f^{(l+1)}} \frac{\partial f^{(l+1)}}{\partial f^{(l)}} = \delta^{(l+1)} \frac{\partial f^{(l+1)}}{\partial f^{(l)}}$$

where
$$\frac{\partial J}{\partial f^{(l_{max})}}$$
 is known

3. Use back-propagated error signals to compute gradients w.r.t. parameters only for the function elements with parameters where their derivatives w.r.t. parameters are known by symbolic computation.

$$\nabla_{\theta^{(l)}} J(\theta; x, y) = \frac{\partial}{\partial \theta^{(l)}} J(\theta; x, y) = \frac{\partial J}{\partial f^{(l)}} \frac{\partial f_{\theta^{(l)}}^{(l)}}{\partial \theta^{(l)}} = \delta^{(l)} \frac{\partial f_{\theta^{(l)}}^{(l)}}{\partial \theta^{(l)}}$$

1 1 1

where
$$\frac{\partial f_{\theta^{(l)}}^{(l)}}{\partial \theta^{(l)}}$$
 is known

4. Sum gradients over all example to get overall gradient.

$$\nabla_{\theta^{(l)}} J(\theta) = \sum_{i=1}^{m} \nabla_{\theta^{(l)}} J(\theta; x^{(i)}, y^{(i)})$$

Convolution as Matrix Multiplication

Convolution as Matrix Multiplication

1	4	1	0	1	4	3	0	3	3	1	0	0	0	0	0
	1	4	1	0	1	4	3	0	3	3	1	0			
				1	4	1	0	1	4	3	0	3	3	1	0
					1	4	1	0	1	4	3	0	3	3	1

Backpropagation in Convolution Layer

Forward propagation

$$x * w = y$$

Backward propagation

$$\frac{\partial J}{\partial x} = flip(w) * \frac{\partial J}{\partial y}$$

Gradient computation

$$x * \frac{\partial J}{\partial y} = \frac{\partial J}{\partial w}$$

Pooling Layer: Subsampling Equations Pooling mMean Pooling $g(x) = \frac{\sum_{k=1}^{m} x_k}{m}$ $\frac{\partial g}{\partial x} = \frac{1}{m}$ $g(x) = \max(x) \qquad \frac{\partial g}{\partial x_i} = \begin{cases} 1 & if \ x_i = \max(x) \\ 0 & otherwise \end{cases}$ Max Pooling $g(x) = ||x||_{p} = \left(\sum_{i=1}^{m} |x_{k}|^{p}\right)^{\frac{1}{p}} \quad \frac{\partial g}{\partial x_{i}} = \left(\sum_{i=1}^{m} |x_{k}|^{p}\right)^{\frac{1}{p}-1} . |x_{i}|^{p-1}$ L^p Pooling

Backpropagation in the Pooling Layer

Forward propagation (subsampling)

Backward propagation (upsampling)