
Basics of Neural Networks and 
Convolutional Neural Networks

Chetan Arora



Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Perceptron

output = 1 if	 *
!"#

$

𝑊!𝑥!  > 0

−1 otherwise

𝑊 = 1

𝑊 = 1

𝑇 = 1.5

𝑦

𝑥



Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Perceptron

AND

𝑊 = 1

𝑊 = 1

T= 1.5



Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Perceptron

AND OR NOT

𝑊 = 1

𝑊 = 1

T= 1.5

𝑊 = 1

𝑊 = 1

T= 0.5
𝑊 = −1

T= −0.49



Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Perceptron: Linear Threshold Unit
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Decision boundaries
• In simple cases, divide feature space 

by drawing a hyperplane across it.

• Known as a decision boundary.

• Discriminant function: returns 
different values on opposite sides. 
(straight line)

• Problems which can be thus 
classified are linearly separable.
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Decision Surface of a Perceptron
• Perceptron is able to represent some useful functions
• 𝐴𝑁𝐷(𝑥%, 𝑥&) choose weights 𝑤# = −1.5,	𝑤%= 1,𝑤& = 1
• But functions that are not linearly separable (e.g. 𝑋𝑂𝑅) are not 

representable
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Solution in 1980s: Multilayer Perceptrons
• Removes many limitations of single-layer networks
• Can solve 𝑋𝑂𝑅

• Exercise: Draw a two-layer perceptron that computes the XOR function
• 2 binary inputs 𝜉%  and 𝜉&
• 1 binary output
• One “hidden” layer
• Find the appropriate
 weights and threshold
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Different Non-Linearly Separable Problems
Structure Types of

Decision Regions
Exclusive-OR
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Neural Networks: Two Perspectives
Find linear boundaries only, but 
transform the data first in a way 
that makes linear boundaries OK

Use nonlinear 𝑓(𝑥) to  draw 
complex boundaries,  but 
keep the data unchanged



Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Neural Networks as Learning Representations
Input Layer

Hidden Layer

Output Layer

Handwritten images

+1
-1
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What is this unit doing?
Input Layer

Hidden Layer

Output Layer

Handwritten images
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Strong positive weight

Low or zero weight elsewhere

What does this unit detect? 
1 5 10 15 20 25

it will send strong signal for a horizontal
line in the top row, ignoring everywhere else 
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What does this unit detect? 
1 5 10 15 20 25

Strong positive weight

Low or zero weight elsewhere

Strong signal for a dark area in the top left
corner 
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What does this unit detect?

Handwritten images

Vertical
Lines

Horizontal 
Lines

Small
Loops

But what about position invariance  ???
our example unit detectors were tied to 

specific parts of the image 
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etc …

Successive layers can learn higher representations

detect lines in 
specific positions

      v etc …
Higher level detectors 
(horizontal line,  “RHS 
vertical lune” “upper 
loop”, etc…)

1 5 10 15 20 25

  What does this unit detect?
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Scaling-up
• Challenges of practical image classification
• Must deal with very high-dimensional 

inputs
• 1600×1200 pixels = 1.9m inputs, or 
3×1.9m if RGB pixels
• Can we exploit the 2D topology of 

pixels (or 3D for video data)?
• Can we build invariance to certain 

variations we can expect
• Translations, illumination, etc.

Flower

1600 pixels

12
00

 p
ix

el
s



Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Motivation: Recognizing an Image 
• Input is 5x5 pixel array 

• Simple back propagation net 

Hidden Units Output
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Recognizing an Image with unknown location
• Object can appear either in the top image or in the bottom image location
• Output indicates presence of object regardless of position
• What do we know about the weights? 

Hidden Units

Output

Hidden Units
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Recognizing an Image with any location
• Each possible location the object can appear in has its own set of hidden 

units 
• Each set detects the same features except in a different location
• Locations can overlap 

Hidden Units

Output

Hidden Units

… …
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Key Ideas for a Usable ML Model for Images
Images:
1. Local Structure
2. Reusable Composition
3. Hierarchical

Must exploit each of them
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CNN: Local Connectivity
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CNN: Local Connectivity
• Each hidden unit is connected only to a sub-region (patch) of the input 

image
• It is connected to all channels
• 1 if greyscale image
• 3 (R, G, B) for color image

Solves the following problems:
• Fully connected hidden layer would have an unmanageable number of 

parameters
• Computing the linear activations of the hidden units would be very 

expensive 
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CNN: Parameter Sharing
• Units organized into the same “feature map/template” share parameters
• In this way all neurons detect the same feature/template at different 

positions in the input image
• Hidden units within a feature map cover different positions in the image 

Feature map 1 Feature map 2 Feature map 3
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CNN: Parameter Sharing
How does it help?
• Reduces even more number of parameters (compared to local connectivity)
• Will extract the same features at every position 
• features are “equi-variant”
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CNN: Parameter Sharing
• Each feature map forms a 2D grid of 

features
• Can be computed with a discrete 

convolution (∗) of a kernel matrix 𝑘!'  
which is the hidden weights matrix 𝑊!'  
with its rows and columns flipped:

𝑦' = tanh*
!

𝑘!'𝑥!

• 𝑥!  is the 𝑖()  channel of input
• 𝑘!'  is the convolution kernel
• 𝑦'  is the hidden layer

Feature Maps
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CNN: Parameter Sharing
• Stride (typically denoted by s in CNNs) decides the spacing between 

overlapping convolutions

• Helps in reducing parameters further 
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Pooling or Subsampling  Layer
• The pooling layers reduce the spatial resolution of each feature map. Helps 

to collate the features in a region

• By reducing the spatial resolution of the feature map, a certain degree of 
noise, shift and distortion invariance is also achieved.



Chetan Arora
Department of Computer Science and Engineering, IIT Delhi

Jargon
• Convolutional Neural Networks
• also called CNNs, Conv Nets etc.

• Each hidden unit channel
• also called map, feature, feature type, dimension

• Weights for each channel
• also called kernels

• Input patch to a hidden unit at (x,y)
• also called receptive field 
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Typical CNN
• Alternates convolutional and pooling layers

• Output layer is a regular, fully connected layer with softmax non-linearity
• Output provides an estimate of the conditional probability of each class

• The network is trained by stochastic gradient descent
• Backpropagation is used similarly as in a fully connected network
• We have seen how to pass gradients through element-wise activation 

function
• We also need to pass gradients through the convolution operation and 

the pooling operation 



Backpropagation
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Backpropagation in General Cases
1. Decompose operations in layers of a neural network into function 

elements whose derivatives w.r.t. inputs are known by symbolic 
computation.

ℎ* 𝑥 = 𝑓(,!"#) ∘ ⋯ ∘ 𝑓
* $
, ∘ ⋯ ∘ 𝑓

* %
& ∘ 𝑓 % 𝑥

where 𝑓(,!"#) = ℎ*𝑓(%) = 𝑥

∀𝑙:
𝜕𝑓(,)

𝜕𝑓(,.%)
is knownand
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Backpropagation in General Cases
2. Backpropagate error signals corresponding to a differentiable cost 

function by numerical computation (Starting from cost function, plug in 
error signals backward).

𝛿 , = /
/0 $ 𝐽 𝜃; 𝑥, 𝑦 = /1

/0($'()
/0($'()

/0($)
= 𝛿(,2%) /0

($'()

/0($)
 

where  /1
/0($!"#) is known
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Backpropagation in General Cases
3. Use back-propagated error signals to compute gradients w.r.t. parameters 

only for the function elements with parameters where their derivatives 
w.r.t. parameters are known by symbolic computation.

 𝛻* $ 𝐽 𝜃; 𝑥, 𝑦 = /
/* $ 𝐽 𝜃; 𝑥, 𝑦 = /1

/0($)
/0
*($)
($)

/*($)
= 𝛿(,)

/0
*($)
($)

/*($)
 

where  
/0
*($)
($)

/*($)
 is known
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Backpropagation in General Cases
4. Sum gradients over all example to get overall gradient.

𝛻* $ 𝐽 𝜃 =*
!"%

3

𝛻* $ 𝐽 𝜃; 𝑥(!), 𝑦(!)
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Convolution as Matrix Multiplication
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Convolution as Matrix Multiplication
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Convolution as Matrix Multiplication
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Backpropagation in Convolution Layer

𝑥 ∗ 𝑤 = 𝑦

𝜕𝐽
𝜕𝑥

= 𝑓𝑙𝑖𝑝 𝑤 ∗
𝜕𝐽
𝜕𝑦

𝑥 ∗
𝜕𝐽
𝜕𝑦

=
𝜕𝐽
𝜕𝑤

Forward propagation

Backward propagation

Gradient computation
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Pooling Layer: Subsampling Equations
𝑚

𝑥

𝑔 𝑦$
Pooling

𝑔 𝑥 =
∑4"%3 𝑥4
𝑚
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=
1
𝑚

Mean Pooling

Max Pooling g x = max 𝑥
𝜕𝑔
𝜕𝑥!

= k1 𝑖𝑓	𝑥! = max(𝑥)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Backpropagation in the Pooling Layer

𝑚

𝑥

𝑔 𝑦!
𝑚

𝛿!
(#)

⁄𝜕𝑔 𝜕𝑥

Forward propagation (subsampling) Backward propagation (upsampling)


