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light:
shape: box [-0.5,0.5] ..
intensity: rgb (10,10,10)
sphere:
center: (-0.5,0.5,-0.5)
radius: 0.5
material: mirror
sphere:
center: (0.5,0.5,0.5)
radius: 0.5
material: glass
wall:
X: —1
colour: rgb (0.8,0.2,0.2)

Graphics

Vision

Image
processing
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Art, design,
architecture
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Scientific visualization and training
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Actually, computer graphics is in how all of us interact
with computers today!

...Wait, how?



Graphical user interfaces, typography

G Andre Lorico

(8 Family

Notifications

m Sound

(@ Focus

a Screen Time

>4 General

© Appearance

Accessibility
.2 Wallpaper

Screen Saver

- Control Center

Appearance

Appearance

AR

Light Dark Auto

Accent color <N N N N N NON N |

Multicolor

Highlight Color | | Accent Color ¢
Sidebar Icon Size Medium <
Allow Wallpaper Tinting in windows . @)

Show scroll bars...

© Automatically based on mouse or trackpad
When scrolling
Always

Click in the scroll bar to...

© Jump to the next page
Jump to the spot that’s clicked

Apple

Fontographer e



Computing without graphics
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Punched card from a

Fortran program



[ root@localhost ~]# ping -q fa.wikipedia.org

PING text.pmtpa.wikimedia.org (208.80.152.2) 56(84) bytes of data.
~C

--- text.pmtpa.wikimedia.org ping statistics ---

Computing without graphics

[ root@localhost ~]# cd /var
_root@localhost var]# s -la

total 72

drwxr-xr-x. 18 root root 4096 Jul 30 22:43 .

drwxr-xr-x. 23 root root 4096 Sep 14 20:42 ..
drwxr-xr-x. 2 root root 4096 May 14 00:15 account
drwxr-xr-x. 11 root root 4096 Jul 31 22:26 cache
drwxr-xr-x. 3 root root 4096 May 18 16:03 db
drwxr-xr-x. 3 root root 4096 May 18 16:03 empty
drwxr-xr-x. 2 root root 4096 May 18 16:03 games
drwxrwx--T. 2 root gdm 4096 Jun 2 18:39 qgdm
drwxr-xr-x. 38 root root 4096 May 18 16:03 1ib
drwxr-xr-x. 2 root root 4096 May 18 16:03 local
Lrwxrwxrwx. 1 root root 11 May 14 00:12 lock -> ../run/lock
drwxr-xr-x. 14 root root 4096 Sep 14 20:42 log
Lrwxrwxrwx. 1 root root 10 Jul 30 22:43 mail -> spool/mail
drwxr-xr-x. 2 root root 4096 May 18 16:03 nis
drwxr-xr-x. 2 root root 4096 May 18 16:03 opt
drwxr-xr-x. 2 root root 4096 May 18 16:03 preserve
drwxr-xr-x. 2 root root 4096 Jul 1 22:11 report
Lrwxrwxrwx. 1 root root 6 May 14 00:12 run -> ../run
drwxr-xr-x. 14 root root 4096 May 18 16:03 spool
drwxrwxrwt. 4 root root 4096 Sep 12 23:50 py
drwxr-xr-x. 2 root root 4096 May 18 16:03 yp

[root@localhost var]# yum search wiki

Loaded plugins: langpacks, presto, refresh-packagekit, remove-with-leaves
remfusion-free-updates

remfusion-free-updates/primary db

remfusion- nonfr c-Updates

updates/metalink

updates

Bodates/primary db

]

62 kB/s
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Aspects of computer graphics

s

R v.»l.r:c\\ s.mu

SN
R

-

wz,.r...,.f P

%W. y

Animation

Rendering

Modelling
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Rendering

® Quantitying light and materials
® Computing light transport in a scene

® Real-time approximations

Indirect 74 ~ VSN Glossy St
Ll o y , 4§ reflections -}’

Caustics .

Scattering




Animation

® Character animation

® Physics-based animation

Thurey et al. 2010
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Rasterization




Rasterization

To display any 2D or 3D shape on a pixel display, it needs to be rasterized!

Input: Geometrical "primitives” (usually triangles) with attributes (e.g. colour)

Output: Raster image approx-
imating the given shape

Usually this is performed by the
graphics processing unit (GPU)




Preview: The (real-time)
graphics pipeline

Even tor 3D graphics,

1. first we project the vertices of each 3D
triangle to their 2D locations on the screen

2. then we rasterize the 2D triangle!

So it makes sense to study rasterization of 2D
graphics first.

4
testing and blending
4

framebuffer



How to draw an arbitrary triangle on a pixel grid?

For now, let’s pick a sample point at the center of each pixel, and colour the
pixel if the sample point lies inside the triangle.
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How to check whether a point is inside a triangle?



A point p is inside triangle abc if:

® pisto the left of edge ab, and

® pisto the left of edge bc¢, and

® pisto the left of edge ca.




Edge tangent vector:
Edge “normal” vector:

n = perp(t) = (-t,, t)

p is to the left of ab if

n-(p—-a)=0



Points to the left of ab




Points to the left of ab
and to the left of be




Points to the left of ab
and to the left of be
and to the left of ca




Would this still work it the vertices were given in clockwise order instead?
C b

Easy to fix: First check if ¢ is to the left or the right of ab.
But, better it you ensure all triangles are anticlockwise in the first place.



So, here's what our rasterization algorithm looks like so far.

drawTriangle(triangle, colour):
for x = 0 ... 1mageWidth:
for vy = 0 ... 1mageHeight:
1T 1sInside(x, y, triangle):
image|x, y|] = colour

s this an efficient algorithm?

How can we make it faster?



Better to only check the pixels in the
bounding box of the triangle.

What are the coordinates of this box?

Xmin = min {aXI bXI Cx}/

Are there any cases where this is also
terribly inefficient?






What about more complex shapes?

Split them up into triangles, then draw each triangle /

for each triangle:
for each sample (x, y) it covers:
imagel(x, y] = triangle.colour(x, y)

Something to think about: What it we did this instead?

for each sample (x, y):
for each shape that covers it:
imagelx, y] = shape.colour(x, y)
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Transformations




Transformations

Scaling 077
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Applications: Posing

Third Shift Vintage



Cristian Goga




Transformation matrices

As you probably know, we can represent many transformations by matrices:

Vv d Vx+d V
. [x] A [an a12] Ay — [ 1 12 y]

Yy a1 dpx Ay Vy T axVy,

and similarly in 3D:

Vx al:_ Cl12 Cl13 allvx T a12vy T a13VZ

v=|Y% A= 1|4 ay ay Av = | Q4 V, T ayyVy, T dy3V,
a1 d a

v, 31 “32 ¢33 as Vv, + azyVy + as3Vy,



What are the matrices for these transformations?

N
@)

RN
)

0.5 1.0 1.5

Rotation

Scaling



What can’t matrices do?

View # AVoIoI

b

AN
DO

e
&

0.5 1.0 1.5

Translation Nonlinear deformation
(for now...)

Sorkine & Alexa 2007



Transformations

A transtormation is just a function that map points to points

T:

Now:
(easy to represent with matrices)

Later: affine transtormations
(linear transtormations + translation)

R"— R

A

/\
) X /

/

AN\

~_




Linear algebra



Linear algebra

Linear algebra is not about little lists of numbers!




Outcomes of operations should be independent of arbitrary choices!

It a + 2b = ¢ in my basis, then it should be true in your basis as well.

Best to think in a way as much as possible

Though, to compute anything we will always need a basis in the end...



What are vectors, really?

A vector is an element of a

A vector space over R is any set V equipped with two operations:

® scalar multiplication: R x V = V el

P

satisfying various identities, e.g. u+ v=v + u, a(u + v) = au + av, etc.

® vector addition: Vx V=V



To do geometry, we also need a third operation: /

® dot product / inner product: V x V = R ——

satisfying identities like u - v=v - u, (au + bv) - w = a(u - w) + b(v - w), etc.

III

Think of these three operations as the “public API"” ot the vector data type.

Write your algorithm and code in terms of these, and it will work in 2D, in 3D,
and in any n dimensions!

(It will also work for other vector spaces: functions, images, etc. ...)



Bases

A basis is just a set of vectors {e1, ey, ...} such that vector can be written
as a linear combination of them.

vy v
. : : e
V = V2 N thIS ba5|s < V=Vvie| + vey + - I/'

What happens when you apply a matrix A to the basis vectors?

di11 dypp i1

|
Ae = |Gy ayy - O] = |%;1| = 1st column of A



This determines the action of A on all other vectors!

Av = A(vier + voes + 1) = vi(Aeq) + vr(Aey) + - = viar + vraz + -+
v Av
do
N [_./'
e
e a;

® |nterpretation 1: A matrix transtorms the basis vectors to its columns; all
other vectors follow.

® Interpretation 2: Matrix-vector multiplication Av produces a linear
combination of the columns of A, weighted by the components vy, v, ...



Now, what is the matrix for this transformation?

a; = image of e1 = [_0058] a, = image of e, = [(1);]

~0.8 1.1
A =
[0.5 0.2]



Scaling

|

cosfd —sind
siné cosd@

Reflection



Composition of transformations

Apply transtormation A then transtormation B:

v — Av — B(Av)=(BA)v

Column interpretation: Av

B[al az ...] — [Bal Baz ...]

Often, want to apply a sequence of n transformations on millions of vertices.
Just compute the product: then only 1 matrix-vector multiplication per vertex.



Stretch x,
shrink y

AB # BA

Stretch x,
shrink y




Rotations in 3D

Rotation
about x-axis

G-

Rotations about the coordinate axes:

Z

1 0 0 cosd O sin@ cos —sind 0

0 cos@ —sinb 0 1 0 sinf  cosf@ O

0 sinf cosé —sin@d 0O cosd 0 0 1
Rotation about x-axis Rotation about y-axis Rotation about z-axis
= Rotation in yz-plane = Rotation in zx-plane = Rotation in xy-plane

Are these all the possible rotations?



Rotations in 3D

Are these all possible rotations?

Not at all!

A rotation is any transformation which:
® preserves distances and angles

® preserves orientation
("F" can become “4" but not “4")

Equivalently, R"IR =1, and det R = 1




Rodrigues’ rotation formula

Rotation around an axis n by angle 6:

R=1cos 8+ [n]csin 8+ nnT (1 —cos 6)

0 -—n, n,
where[nlx=| n, 0 —n,
-n, n, 0
Hints: h

® [n]. is the “cross-product matrix”: [n]x v=n x v

® Assume an orthogonal basis n, e1, e2 and see what R does to it

O

semath.info



Given unit vectors u and v, find a way to construct a rotation matrix R which
mapsutov,i.e.Ru=v.

Is it unique, or are there many different such rotations?



15 minute break



Translations 15|

Move all points by a constant displacement

Ip)=p +t ¢

So a linear transtormation followed by a translation
will be of the torm T(p) = Ap + b

A bit tedious to compose:

T2(T1(p)) = A2(A1p + b1) + by = (A2A)p + (A2b1 + by)



Suppose | have both points and directions/velocities/etc. to transform.

Y
—0505 ”:””0.5””1.0”
Original: Rotation by 45°: Translation by (O, 0.5):
p = (0.5, 0.5) p=(0,0.7) p=(0.51)
v=(1,0) v =(0.7,0.7) v =(1,0.57

't seems translation should only affect some things, not others. But why?



Are points really vectors?

How about | just choose an origin and
then add the displacement vectors?




Points vs. vectors

Points form an A over the vector space V.

® Point-vector addition: A x V — /

® Point subtraction: A x A — o

with the obvious propertiese.g. (p+u)+v=p +(u+v),p +(q - p) = q, etc.



Coordinate frames

\"/
To specify a vector numerically, we need a basis e; I_>/V

Vi €1
v=vies + wey+ - & v=|V2| inthe basis
To specify a numerically, we need a : origin and basis
P> 2
p=pier+per+--+0 somaybe p=1| .17

O e



P1

. . P
Write a point as an (n+1)-tuple p = ,2 to mean p = p1e + pye; + -+ + 0.

A 0
0 1

Linear transtormations are now [ , mapping e; > Ae;and o = o

X

s. 0 Of |p, S D,
O [Py| = [5Py
1

e.g. |0 s
0 O



Translation by a vector t: [(I) I] mapping e; > e;buto = o +t
1 0 .| [p, p, T,
€.g. 0 1 ty py — py + ty
0 0 1



What about vectors?

Apply a translation:

V = V1€

Voe)

o O =
S = O

RN

e \<N

<
|

\<< ><<






Homogeneous coordinates

Add an extra coordinate w at the end.
® Points: w =1
® \/ectors: w=0

Transtormations become (n+1)x(n+1) matrices

A 0
0 1

e Linear transformations: [

e Iranslations: [(I’ I]



At
G | :
enera [O 1]

® Corresponds to linearly transforming basis vectors e; = Ae;
and translating origin o = o + t

® Maps parallel lines to parallel lines, but does not preserve the origin

® Composition: just matrix multiplication again.



Example: Rotate by given angle 8 about given point p (instead of about origin)

Translate by —p Rotate by 6 Translate by p
about origin



Given coordinates of p in frame 1, what are its coordinates in frame 27

pPp=p1€1 + prer + °* + O

Write coords of eq, e, ... and o in frame 2:

® ®
® ®
ei p— . . 0O =
° ° ° ]71
® ® ® p
2
Then p = : : : : Change of coordinates looks
¢ . Is . . I
O 0 .- 1 exactly like a transformation matrix!




Active transformation: Moves points
to new locations in the same frame

Change of coordinates (passive
transformation): Gives coordinates
of the same point in a different frame

Matrices are the same but the meaning
is different! You have to keep track.

e.g. world_driver = world_from_car * car_driver
Vec3 Mat3x3 Vec3



Luciano Testoni



So tar we know:
® How to draw 2D shapes

® How to transform 2D and 3D shapes

Today: How to draw 3D shapes on a 2D screen?



Parallel projection

Fasy way: Just drop one of the coordinates lol

® Useful for engineering drawings

® Doesn’t match how eyes and cameras
actually see things!

_-“"Angel & Shreiner, Interactive Computer Graphics






Algorithmic drawing

in the 1500s

A point is drawn where the ray from

the viewpoint meets the image plane.
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Pinhole camera model

camera / eye / etc.

v

sensor / retina

a erture
1 ap




Scene point Assume camera is at the origin,
X,y P = (x,y,2) pointing in the direction -z.

Where is the point p projected to?

X U
z d
xd
U = —
Z

Image plane

Similarly v = yd/z

(W.l.o.qg., let’s take d = —1)



What if the camera is not at the origin and/or not looking along —Zz?

3
4

Just change to a coordinate system in which it is.



Viewing transformation

Usually, user specifies:

® center of projection ¢

® target point t or view vector v = (t—c)/llt—cll
® "up vector” u

Construct orthonormal basis

e, = (vxu)/llvxull
e1 = VXer
e3 = —V



Camera space

Object space

World space v\_/

Camera = world: M =[e1 e, e3 ]
World = camera: M-

xd/ Z]

Once point is in camera space, projected point = [

yd/z



16mm 24mm

PR

Angle of view

Canon EF Lens Work Ill



16 mm (110°)

Up close and zoomed wide

with short focal length



Walk back and zoom in

th long focal length

Wi

o
N
A

S

S
o
o
N

Ren Ng



Coordinates after “"Normalized

perspective division device coordinates”
(Actually there’'s a bit more in NDC... Will correct later!)

Choose transformation so that points in field of view fall inside [-1,1] x [-1,1]



Normalized

device coordinates

And finally, we can rasterize our triangles!

Screen coordinates
(locations of pixels)

(W, H)



® Object space — world space

Two problems:

® \World space = camera space
® Fvery step Is a matrix, except

® Camera space — projection plane perspective division.
(division by 2)

® Final result has lost depth information
(the z coordinate): don't know which

® NDC — screen coordinates points are in front of which

® Projection plane = NDC


















Visibility a.k.a. hidden surface removal

Which surtaces are visible? Those that are not hidden by nearer surfaces.

Triangles drawn without Correct result

considering depth / visibility
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Homogeneous coordinates revisited

X X
Recall points vs. vectors: p = [Y] , V= IYI

Let's generalize: points can have w = O

X

Any point in homogeneous coordinates p = IYI with w = O

/ W
/—> corresponds to the 2D point p = (x/w, y/w)



1

N

The main idea: Points in 2D correspond to
in 3D!

CX

All points p = [W] on a line represent the point

C
p = (x, y) where the line meets the plane w =1

Analogy: Various tuples (2,4), (-1,-2), (5,10), ... all
represent the same rational number %2

Linear and affine transformations still work as beforel!



Perspective projection: (x,y,z) = (xd/z, yd/z)

Scene point

With homogeneous coordinates:

XY P = (Xxy,2)
X xd/z
y yd/Z
<
1
1 0 0 O
Imagelplane Corresponding matrix: 8 (1) (1) 8
0 0 1/d O

Hang on, we've still lost depth information.



To retain depth information, let's copy w into the z-coordinate:

)C /j X X xd/ 4
% 2|2 Jd - 1%
1/7



The view frustum

In theory, horizontal and vertical angles
of view define an infinite

View volume 4 .
\ In practice, cut off at near and far
' "clipping planes”:

, ek Why?
//:/,/Z\\'\,,f i clipping

View  clipping plane : :
olone  plane ® Exclude objects behind the camera

& o’ -
P T e
RIS

o L . .
COP ® Finite precision of depth coordinate
Angel & Shreiner, Interactive Computer Graphics ,
(we'll see why later)
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Marschner & Shirley, Fundamentals of Computer Graphics
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Clipping

draw

: ; don’t draw

Keenan Crane

® Discard triangles outside view frustum
® Clip triangles partially intersecting view frustum

Usually implemented in homogeneous coordinates (before division)



