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light: 
shape: box [-0.5,0.5] … 
intensity: rgb (10,10,10) 

sphere: 
center: (-0.5,0.5,-0.5) 
radius: 0.5 
material: mirror 

sphere: 
center: (0.5,0.5,0.5) 
radius: 0.5 
material: glass 

wall: 
x: -1 
colour: rgb (0.8,0.2,0.2) 

…

Graphics

Vision

Image 
processing



Entertainment



Art, design, 
architecture
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Scientific visualization and training
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Inverse graphics
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Actually, computer graphics is omnipresent in how all of us interact 
with computers today! 

…Wait, how?



Graphical user interfaces, typography
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Computing without graphics

ENIAC (1945)

Punched card from a 
Fortran program



Computing without graphics



Aspects of computer graphics

Modelling Rendering Animation



Modelling
How to work with geometry? 

• Representation 

• Manipulation and editing 

• Geometric queries



Rendering
• Quantifying light and materials 

• Computing light transport in a scene 

• Real-time approximations



Animation
• Character animation 

• Physics-based animation
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Rasterization



Rasterization
To display any 2D or 3D shape on a pixel display, it needs to be rasterized! 

Input: Geometrical “primitives” (usually triangles) with attributes (e.g. colour) 

Output: Raster image approx- 
imating the given shape 

Usually this is performed by the 
graphics processing unit (GPU)



Preview: The (real-time) 
graphics pipeline

Even for 3D graphics, 

1. first we project the vertices of each 3D 
triangle to their 2D locations on the screen 

2. then we rasterize the 2D triangle! 

So it makes sense to study rasterization of 2D 
graphics first.



How to draw an arbitrary triangle on a pixel grid? 

For now, let’s pick a sample point at the center of each pixel, and colour the 
pixel if the sample point lies inside the triangle. 

How to check whether a point is inside a triangle?



A point p is inside triangle abc if: 

• p is to the left of edge ab, and 

• p is to the left of edge bc, and 

• p is to the left of edge ca.
a

b

c

p



Edge tangent vector: 

t = b − a = (bx − ax, by − ay) 

Edge “normal” vector: 

n = perp(t) = (−ty, tx) 

p is to the left of ab if 

n · (p − a) ≥ 0a

b

t

perp(t)

p



Points to the left of ab 
 

a

b

c



Points to the left of ab 
and to the left of bc 

a

b

c



Points to the left of ab 
and to the left of bc 
and to the left of ca

a

b

c



Would this still work if the vertices were given in clockwise order instead? 

Easy to fix: First check if c is to the left or the right of ab. 
But, better if you ensure all triangles are anticlockwise in the first place.

a

b

c

a

c

b



So, here’s what our rasterization algorithm looks like so far. 

drawTriangle(triangle, colour): 
  for x = 0 ... imageWidth: 
    for y = 0 ... imageHeight: 
      if isInside(x, y, triangle): 
        image[x, y] = colour 

Is this an efficient algorithm? 

How can we make it faster?



Better to only check the pixels in the 
bounding box of the triangle. 

What are the coordinates of this box? 

xmin = min {ax, bx, cx}, 
… 

Are there any cases where this is also 
terribly inefficient?

ymax

ymin
xmin xmax





What about more complex shapes?
Split them up into triangles, then draw each triangle 

for each triangle: 
    for each sample (x, y) it covers: 
        image[x, y] = triangle.colour(x, y) 

 
Something to think about: What if we did this instead? 

for each sample (x, y): 
    for each shape that covers it: 
        image[x, y] = shape.colour(x, y)
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Transformations



Transformations

Translation Rotation

Scaling ???



Applications: Instancing

Star Wars: Episode II – Attack of the Clones (2002)



Applications: Posing
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Applications: Viewing
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Transformation matrices
As you probably know, we can represent many transformations by matrices: 

and similarly in 3D:

v = [vx
vy] A = [a11 a12

a21 a22] Av = [a11vx + a12vy

a21vx + a22vy]

v =
vx
vy
vz

A =
a11 a12 a13
a21 a22 a23
a31 a32 a33

Av =
a11vx + a12vy + a13vz

a21vx + a22vy + a23vz

a31vx + a32vy + a33vy



What are the matrices for these transformations?

Translation Rotation

Scaling ???
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What can’t matrices do?

Translation 
(for now…)
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Transformations
A transformation is just a function that map points to points 

T : ℝⁿ → ℝⁿ 

Now: linear transformations 
(easy to represent with matrices) 

Later: affine transformations 
(linear transformations + translation) x

T(x)
T(·)



Linear algebra



Linear algebra
Linear algebra is not about little lists of numbers! 

 
A vector only has coordinates once you make an (arbitrary) choice of basis

[2
1]≠

[2
1] [ 1

0.5]



Outcomes of operations should be independent of arbitrary choices! 

If a + 2b = c in my basis, then it should be true in your basis as well. 

Best to think in a basis-independent way as much as possible 

Though, to compute anything we will always need a basis in the end…



What are vectors, really?
A vector is an element of a vector space. 

A vector space over ℝ is any set V equipped with two operations: 

• scalar multiplication: ℝ × V → V 

• vector addition: V × V → V 

satisfying various identities, e.g. u + v = v + u, a(u + v) = au + av, etc.



To do geometry, we also need a third operation: 

• dot product / inner product: V × V → ℝ 

satisfying identities like u · v = v · u, (au + bv) · w = a(u · w) + b(v · w), etc. 

Think of these three operations as the “public API” of the vector data type. 

Write your algorithm and code in terms of these, and it will work in 2D, in 3D, 
and in any n dimensions! 

(It will also work for other vector spaces: functions, images, etc. …)



Bases
A basis is just a set of vectors {e1, e2, …} such that any vector can be written 
uniquely as a linear combination of them. 

v =  in this basis    ⇔    v = v1e1 + v2e2 + ⋯ 

What happens when you apply a matrix A to the basis vectors? 

Ae1 =  = 1st column of A

v1
v2
⋮

a11 a12 ⋯
a21 a22 ⋯
⋮ ⋮ ⋱

1
0
⋮

=
a11
a21
⋮

[2
1]

e1

e2

v



This determines the action of A on all other vectors! 

Av = A(v1e1 + v2e2 + ⋯) = v1(Ae1) + v2(Ae2) + ⋯ = v1a1 + v2a2 + ⋯ 

• Interpretation 1: A matrix transforms the basis vectors to its columns; all 
other vectors follow. 

• Interpretation 2: Matrix-vector multiplication Av produces a linear 
combination of the columns of A, weighted by the components v1, v2, …

e1

e2

v

a1

a2
Av
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Now, what is the matrix for this transformation?

a1 = image of e1 ≈ ,    a2 = image of e2 ≈  

A ≈ 

[−0.8
0.5 ] [1.1

0.2]

[−0.8 1.1
0.5 0.2]



Rotation

Scaling

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

[cos θ −sin θ
sin θ cos θ ]

[
sx 0
0 sy]

Reflection

[−1 0
0 1]
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Composition of transformations
Apply transformation A then transformation B: 

v    →    Av    →    B(Av) = (BA)v 

 
Column interpretation: 

 

Often, want to apply a sequence of n transformations on millions of vertices. 
Just compute the product: then only 1 matrix-vector multiplication per vertex.

B [a1 a2 ⋯] = [Ba1 Ba2 ⋯]
a1

a2
Av Ba1

Ba2 (BA)v



AB ≠ BA
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shrink y

Rotate 
by 90°
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Stretch x, 
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Rotations in 3D

1 0 0
0 cos θ −sin θ
0 sin θ cos θ

cos θ 0 sin θ
0 1 0

−sin θ 0 cos θ

cos θ −sin θ 0
sin θ cos θ 0

0 0 1
Rotation about x-axis 
= Rotation in yz-plane

Rotation about y-axis 
= Rotation in zx-plane

Rotation about z-axis 
= Rotation in xy-plane

x

y

z

Rotation 
about x-axis

Rotations about the coordinate axes:

Are these all the possible rotations?



Rotations in 3D
Are these all possible rotations? 

Not at all! 

 
A rotation is any transformation which: 

• preserves distances and angles 

• preserves orientation 
(“F” can become “Ⅎ” but not “ᖷ”) 

Equivalently, RTR = 𝐈, and det R = 1



Rodrigues’ rotation formula
Rotation around an axis n by angle θ: 

R = 𝐈 cos θ + [n]× sin θ + n nT (1 − cos θ) 

where [n]× =  

How? Hints: 

• [n]× is the “cross-product matrix”: [n]× v = n × v 

• Assume an orthogonal basis n, e1, e2 and see what R does to it

0 −nz ny

nz 0 −nx

−ny nx 0
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Given unit vectors u and v, find a way to construct a rotation matrix R which 
maps u to v, i.e. Ru = v. 

Is it unique, or are there many different such rotations?

u

v

R = ?



15 minute break



Translations
Move all points by a constant displacement 

T(p) = p + t 

So a linear transformation followed by a translation 
will be of the form T(p) = Ap + b 

A bit tedious to compose: 

T2(T1(p)) = A2(A1p + b1) + b2 = (A2A1)p + (A2b1 + b2)
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Suppose I have both points and directions/velocities/etc. to transform.

Original: 
p = (0.5, 0.5) 

v = (1, 0)
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Rotation by 45°: 
p = (0, 0.7) 

v = (0.7, 0.7)
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p v?

Translation by (0, 0.5): 
p = (0.5, 1) 
v = (1, 0.5)?

It seems translation should only affect some things, not others. But why?



Are points really vectors?

p1 + p2 = ? 

5p3 = ? 

How about I just choose an origin and 
then add the displacement vectors?

p1

p2p3



Points vs. vectors
Points form an affine space A over the vector space V. 

• Point-vector addition: A × V → A 

• Point subtraction: A × A → V 

with the obvious properties e.g. (p + u) + v = p + (u + v), p + (q − p) = q, etc.



Coordinate frames
To specify a vector numerically, we need a basis 

v = v1e1 + v2e2 + ⋯    ⇔    v =  in the basis 

To specify a point numerically, we need a coordinate frame: origin and basis 

p = p1e1 + p2e2 + ⋯ + o    so maybe    p = ?

v1
v2
⋮

p1
p2
⋮
1

v

e1

e2

p

e1

e2

o



Write a point as an (n+1)-tuple p =  to mean p = p1e1 + p2e2 + ⋯ + o. 

Linear transformations are now , mapping ei → Aei and o → o 

e.g. 

p1
p2
⋮
1

[A 0
0 1]

sx 0 0
0 sy 0
0 0 1

px
py

1
=

sxpx
sypy

1



Translation by a vector t: , mapping ei → ei but o → o + t 

e.g. 

[I t
0 1]

1 0 tx
0 1 ty
0 0 1

px
py

1
=

px + tx
py + ty

1



What about vectors? 

v = v1e1 + v2e2 + ⋯ + 0o    ⇔    v =  

Apply a translation: 

v1
v2
⋮
0

1 0 tx
0 1 ty
0 0 1

vx
vy

0
=

vx
vy

0



w = 1

x

y

w = 1

x

y

px
py

1

vx
vy

0



Homogeneous coordinates
Add an extra coordinate w at the end. 

• Points: w = 1 

• Vectors: w = 0 

Transformations become (n+1)×(n+1) matrices 

• Linear transformations:  

• Translations: 

[A 0
0 1]

[I t
0 1]



General affine transformation:  

• Corresponds to linearly transforming basis vectors ei → Aei 
and translating origin o → o + t 

• Maps parallel lines to parallel lines, but does not preserve the origin 

• Composition: just matrix multiplication again.

[A t
0 1]
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Example: Rotate by given angle θ about given point p (instead of about origin)
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Translate by −p
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Translate by p

M = T(p) R(θ) T(−p)



Given coordinates of p in frame 1, what are its coordinates in frame 2? 

p = p1e1 + p2e2 + ⋯ + o 

Write coords of e1, e2, … and o in frame 2: 

 

Then p = 

ei =

∙
∙
⋮
0

, o =

∙
∙
⋮
1

∙ ∙ ⋯ ∙
∙ ∙ ⋯ ∙
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

p1
p2
⋮
1

p

e1 e2 o

Change of coordinates looks 
exactly like a transformation matrix!



Active transformation: Moves points 
to new locations in the same frame 

Change of coordinates (passive 
transformation): Gives coordinates 
of the same point in a different frame 

Matrices are the same but the meaning 
is different! You have to keep track. 

e.g.  world_driver = world_from_car * car_driver
Vec3 Mat3x3 Vec3



Perspective 
Projection
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So far we know: 

• How to draw 2D shapes 

• How to transform 2D and 3D shapes 

Today: How to draw 3D shapes on a 2D screen?



Parallel projection

Easy way: Just drop one of the coordinates lol 

• Useful for engineering drawings 

• Doesn’t match how eyes and cameras 
actually see things!

Angel & Shreiner, Interactive Computer Graphics



Perspective

Jeff Lynch



Algorithmic drawing 
in the 1500s

Albrecht Dürer

A point is drawn where the ray from 
the viewpoint meets the image plane.



Pinhole camera model
3D object   

camera / eye / etc.

sensor / retina aperture 
/ pupil



Assume camera is at the origin, 
pointing in the direction −z. 

Where is the point p projected to? 

 

 

Similarly v = yd/z 

(W.l.o.g., let’s take d = −1)

x
z

=
u
d

u =
xd
z

−z

x,y

d

q = (u,v,d)

Scene point 
p = (x,y,z)

Image plane



What if the camera is not at the origin and/or not looking along −z?

Just change to a coordinate system in which it is.



Viewing transformation
Usually, user specifies: 

• center of projection c 

• target point t or view vector v = (t−c)/‖t−c‖ 

• “up vector” u 

Construct orthonormal basis 

e2 = (v×u)/‖v×u‖ 
e1 = v×e2 
e3 = −v



Camera → world: M = [e1  e2  e3  c] 

World → camera: M−1 

Once point is in camera space, projected point = [xd/z
yd/z]

Object space

World space

Camera space



Canon EF Lens Work III 



Ren NgCS184/284A

Perspective Composition 

16 mm (110°)

Up close and zoomed wide 
with short focal length

Ren Ng



Ren NgCS184/284A

Perspective Composition 

200 mm (12°)

Walk back and zoom in 
with long focal length

Ren Ng



Choose transformation so that points in field of view fall inside [−1,1] × [−1,1]

(ℓ,b)
(r,b)

(ℓ,t)
(r,t)

−1

−1

1

1

“Normalized 
device coordinates”

Coordinates after 
perspective division

(Actually there’s a bit more in NDC… Will correct later!)



And finally, we can rasterize our triangles!

−1

−1

1

1 (0,0) W

H
(W,H)

Normalized 
device coordinates

Screen coordinates 
(locations of pixels)



• Object space → world space 

• World space → camera space 

• Camera space → projection plane 
(division by z) 

• Projection plane → NDC 

• NDC → screen coordinates

Two problems: 

• Every step is a matrix, except 
perspective division. 

• Final result has lost depth information 
(the z coordinate): don’t know which 
points are in front of which













Visibility a.k.a. hidden surface removal
Which surfaces are visible? Those that are not hidden by nearer surfaces.

Triangles drawn without 
considering depth / visibility

Correct result



LearnOpenGL.com



LearnOpenGL.com



Homogeneous coordinates revisited

Recall points vs. vectors: p = , v =  

Let’s generalize: points can have any w ≠ 0

[
x
y
1] [

x
y
0]

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

p

v

Any point in homogeneous coordinates p̂ =  with w ≠ 0 

corresponds to the 2D point p = (x/w, y/w)
[

x
y
w]



The main idea: Points in 2D correspond to lines through 
the origin in 3D! 

All points p̂ =  on a line represent the same point 

p = (x, y) where the line meets the plane w = 1 

Analogy: Various tuples (2,4), (−1,−2), (5,10), … all 
represent the same rational number ½ 

Linear and affine transformations still work as before!

[
cx
cy
c ]



Perspective projection: (x,y,z) → (xd/z, yd/z) 

With homogeneous coordinates: 

 →  ~  

Corresponding matrix:  

Hang on, we’ve still lost depth information.

x
y
z
1

x
y
z

z/d

xd/z
yd/z

d
1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

−z

x,y

d

q = (u,v,d)

Scene point 
p = (x,y,z)

Image plane



To retain depth information, let’s copy w into the z-coordinate: 

 →  ~          →  ~  

Matrix: 

x
y
z
1

x
y
z

z/d

xd/z
yd/z

d
1

x
y
z
1

x
y

1/d
z/d

xd/z
yd/z
1/z
1

1 0 0 0
0 1 0 0
0 0 0 1/d
0 0 1/d 0



The view frustum
In theory, horizontal and vertical angles 
of view define an infinite view cone 

In practice, cut off at near and far 
“clipping planes”: view frustum 

Why? 

• Exclude objects behind the camera 

• Finite precision of depth coordinate 
(we’ll see why later)

Angel & Shreiner, Interactive Computer Graphics 



Marschner & Shirley, Fundamentals of Computer Graphics



M = 

2 |n |
r − l 0 r + l

r − l 0

0 2 |n |
t − b

t + b
t − b 0

0 0 |n | + | f |
|n | − | f |

2 |n | | f |
|n | − | f |

0 0 −1 0

perspective 
transformation

affine 
transformation

M

(ℓ,b,−n)

(r,t,−n)

(−1,−1,−1)

(1,1,1)

z = −f

z = −n

Normalized 
device coordinates

(for real this time)



Clipping

• Discard triangles outside view frustum 

• Clip triangles partially intersecting view frustum 

Usually implemented in homogeneous coordinates (before division)

Keenan Crane


