
H
en

rik
 W

an
n

Je
ns

en

Computer
Graphics

GRAPHICS & VISION
SUMMER SCHOOL

• Object space → world space

• World space → camera space

• Camera space → projection plane (division by z)

• Projection plane → NDC

• NDC → screen coordinates

Perspective projection: (x,y,z) → (xd/z, yd/z)

With homogeneous coordinates:

 → ~

Corresponding matrix:

x
y
z
1

x
y

1/d
z/d

xd/z
yd/z
1/z
1

1 0 0 0
0 1 0 0
0 0 0 1/d
0 0 1/d 0

−z

x,y

d

q = (u,v,d)

Scene point
p = (x,y,z)

Image plane

Marschner & Shirley, Fundamentals of Computer Graphics

But we still need to do visibility testing even in parallel projection!

The 4×4 projection matrix turns perspective projection into parallel projection.

Visibility testing
Each pixel’s colour should be given by the closest triangle that covers it.

This would be easy if I was rendering per-pixel instead of per-triangle:

for each sample:
 for each triangle that covers it:
 if triangle is closest surface seen so far:
 set sample.colour to triangle.colour

This is actually the basic idea behind ray tracing
(which we will cover later!)

Another way, more compatible with the rasterization pipeline:

for each triangle:
 for each sample that it covers:
 if triangle is closest surface seen by sample so far:
 set sample.colour to triangle.colour

This is what’s actually done on the GPU!

Each sample needs to remember the closest depth it has seen, until all the
triangles have been drawn.

Z-buffering
Framebuffer now contains a colour buffer and a depth buffer (a.k.a. z-buffer)

G
ra

nd
 T

he
ft

 A
ut

o
 V

vi

a
A

d
ria

n
C

o
ur

rè
g

es

Colour Depth

drawTriangle(t, rgb):
 for pixels (x,y):
 if isInside(x,y, t):
 z = depth(x,y, t)
 drawSample(x,y,z, rgb)

drawSample(x,y,z, rgb):
 if z < zbuffer[x,y]:
 color[x,y] = rgb
 zbuffer[x,y] = z
 else:
 # do nothing

Z-buffer can only store depth up to finite precision!

Different surfaces can map to same (rounded) depth:“z-fighting”

songho.ca

Shading

Local illumination
Light from a light source with some given intensity hits the surface point

• Light direction ℓ

• Surface normal n

• Viewer direction v

What intensity / colour of light is reflected towards
the viewer?

Depends on surface properties (material, colour, roughness, coating, etc.)

For realistic materials, this can be pretty complicated…

Zeltner and Jakob 2018

A very simple shading model

Specular highlight

Diffuse reflection

Ambient light

Jessica Andrews

Diffuse reflection: Lambertian model
Assume the surface scatters the received light equally in all directions,
i.e. the shaded colour is independent of view direction v.

But how much light is received?
Light per unit area ∝ cos θ = n · ℓ

So, reflected light:

Ld = kd 𝐼 max(0, n · ℓ)

Both kd and 𝐼 can (should!) be RGB colours: multiplied componentwise

diffuse coefficient incident light

Specular reflection: Blinn-Phong model
Perfect mirror: Reflection is bright if and only if v is exactly “opposite” to ℓ

bisector(v, ℓ) = n

Shiny surface: Reflection is bright if v is close to
being opposite to ℓ

h = bisector(v, ℓ) =

Ls = ks 𝐼 max(0, n · h)

v + l
∥v + l∥

phalfway vector

Phong exponent

specular coefficient

p

ks

H
ug

he
s

et
 a

l.

Shading frequency
Per triangle (flat shading)

• Not good for surfaces that are supposed to be smooth

Per vertex (“Gouraud shading”)

• Need normal vector at each vertex

• Colour interpolated across triangle

Per pixel (“Phong shading”)

• Vertex normal interpolated across triangle (and then normalized!)

cg2010studio.com

Vertex normals

M
o

d
o

 d
o

cu
m

en
ta

tio
n

Light is coming from the right. Why isn’t the left side totally black?

Light is coming from the right. Why isn’t the left side totally black?

Ambient light
Light bounced around the scene is nonlocal: can’t compute from v, n, ℓ only

Instead, just assume there is a constant amount of indirect lighting everywhere

La = ka 𝐼a

jo
o

ja
a

Without ambient light With ambient light

L = La + Ld + Ls
 = ka 𝐼a + kd 𝐼 max(0, n · ℓ) + ks 𝐼 max(0, n · h)

ka, kd, ks (colours) and p (scalar) control the material’s appearance

If multiple lights 𝐼1, 𝐼2, …: add up diffuse and specular terms for each light

p

Ambient Diffuse Specular Blinn-Phong
reflectance model

+ + =

What phenomena are not captured?

Tu
rn

er
 W

hi
tt

ed

H
en

rik
 W

an
n

Je
ns

en

Refraction

Reflection

Shadows

Diffuse interreflection

Caustics

Texture mapping

Chan et al.

Textures

Pixar

Roughness map

Fr
an

ce
sc

o
 S

av
ia

no

Normal mapping

Pa
o

lo
 C

ig
no

ni

Crytek

Detail (e.g. colour, roughness, normal, etc.)
is some function from surface points to e.g.
RGB

Easiest way is to store it in a 2D lookup table
(u,v) → (r,g,b), i.e. an image!

Then we also need to specify for each
surface point (x,y,z) which location in the
image (u,v) to pick up the colour from:
texture coordinates

Avis Kellman

Texture mapping

u

v

Keenan Crane

u

v

Keenan Crane

u

v

Keenan Crane

Sponza

Crytek

Sponza: texture coordinates

Every point with the same texture coordinates
gets the same colour.

Drawing textured triangles
Inputs: (i) mesh with vertex positions (x,y,z) and texture coordinates (u,v),
(ii) texture image

Naïve algorithm:

for each triangle (i,j,k):
 for each rasterized sample:
 (u,v) = interpolate (ui,vi), (uj,vj), (uk,vk)
 texColor = sample texture at (u,v)
 compute shading with e.g. kd = texcolor

High-res reference (1280×1280) Point sampling (256×256)

Texture mapping creates a very irregular sampling pattern!

• Some regions are magnified: multiple screen samples per texture pixel (texel)

• Some regions are “minified”: multiple texels per sample

Marschner and Shirley

Point sampling (256×256)Supersampled reference (256×256, 512 spp)

Supersampled reference (256×256, 512 spp) Elliptical weighted average (EWA)

15 minute break

The Rasterization
Pipeline

Putting it all together

Joe Groff, duriansoftware.com

Epic Games

Transformations Projection Rasterization

Texture mapping VisibilityShading

Vertex processing

Triangle processing

Rasterization

Fragment processing

Per-sample operations

Input: vertices in 3D space

Vertices in NDC

Triangles in screen space

Fragments

Shaded fragments

Output: image in framebuffer

Inputs to the pipeline
For each object, we have two streams:

• Vertices with various attributes (position,
colour, texture coordinates, etc.)

• Indices of triangles (or other primitives)

Why? Each vertex is shared between many primitives
(on average ~6 triangles!)

We also have uniform data, common to all vertices/triangles of an object:

• Transformation matrices, texture images, etc.

VERTICES
A:(1, 1, 1) E:(1, 1,-1)
B:(-1, 1, 1) F:(-1, 1,-1)
C:(1,-1, 1) G:(1,-1,-1)
D:(-1,-1, 1) H:(-1,-1,-1)

TRIANGLES
EHF, GFH, FGB, CBG,
GHC, DCH, ABD, CDB,
HED, ADE, EFA, BAF

Vertex processing
Every vertex is subject to
the same operations:

• Modelling transformation:
object space → world space

• Viewing transformation: world space → camera space

• Projection transformation: camera space → normalized device coordinates

This stage is programmable, done by programmer-specified vertex shader

Output: transformed position in NDC (before division)

Triangle processing
For each triangle (i, j, k):

• Get transformed positions pi, pj, pk of
corresponding vertices

• Clip against the canonical view volume
[−1, 1]3

• Divide by w and transform to pixel
coordinates

Output: clipped triangle(s) in screen space

Rasterization
For each triangle, we will produce
a set of sample points that it covers.

But also: interpolate the vertex
attributes (colour, texture coordinates, etc.) to each covered sample.

We will need these in the next stage!

Output: stream of fragments, i.e. sample-sized pieces of triangle with
interpolated attributes

Fragment processing
We may want to do some computation
to decide the colour of a fragment, e.g.

• Texture lookup

• Lighting computation

This stage is also programmable: fragment shader

Output: fragment colour as a 4-tuple: red, green, blue, alpha (opacity)

Per-sample operations
• Test each sample’s depth vs. z-buffer

• Write its colour to the framebuffer
(optionally blending with existing colour
if alpha < 1)

Once all this is done for all objects in the scene, the framebuffer contains the
final rendered image.

Input: vertices in 3D space
(with attributes)

Vertices in NDC
(before division)

Clipped triangles
in screen space

Fragments
(with interpolated attributes)

Shaded fragments
(with RGBA colour and depth)

Output: image in framebuffer

Vertex processing

Triangle processing

Rasterization

Fragment processing

Per-sample operations

Programmer’s view
Initialization:

• Compile vertex and fragment shaders

• Send uniform variables (transformation matrices,
texture images, etc.) to GPU

• For each object: send vertex attributes, triangle indices

Per frame, for each object:

• Update uniform variables

• Request draw

Vertex processing

Triangle processing

Rasterization

Fragment processing

Per-sample operations

The vertex shader typically applies modelling, viewing,
projection transformations to compute the NDC position…

But actually, it is an arbitrary function that can do
whatever you want to compute the NDC position!

Runs on each vertex independently

• Can’t pass information to other vertices

• Can’t have side-effects (e.g. no writing to global
memory, no print statements)

Inputs: attributes of current vertex, uniform variables

Outputs: vertex position in NDC, other attributes to interpolate to fragments

Vertex shader

Vertices in 3D space

Vertices in NDC

The fragment shader is another arbitrary function.

It can do anything (e.g. texture lookup, lighting
computation, etc.) to compute the fragment colour.

Again, runs on each fragment independently

Inputs: attributes interpolated from vertex shader
output, uniform variables

Outputs: fragment colour (RGBA),
optional: modified fragment depth

Fragment shader can change fragment depth but not fragment position!

Fragment shader

Shaded fragments

Fragments

GPUs
Modern graphics processing units (GPUs)
provide a highly parallelized implementation
of the rasterization pipeline

• Many SIMD cores for running vertex and
fragment shaders in parallel

• Lots of fixed-function hardware for non-
programmable stages (clipping,
rasterization, texture sampling, z-buffering,
etc.)

Discrete GPU card

Integrated GPU (part of CPU die)

Ray Tracing

Turner Whitted

Rasterization vs. Ray tracing
for each shape:
 for each sample:
 get point where shape covers sample
 if point is closest point seen by sample:
 sample.colour = shade(point)

for each sample:
 for each shape:
 get point where shape covers sample
 if point is closest point seen by sample:
 sample.colour = shade(point)

Ray tracing

For each sample:

Generate eye ray

Find the closest intersection

Get shaded colour at intersection point

Set sample colour to it

Ray tracing

For each sample:

Generate eye ray

Find the closest intersection

Get shaded colour at intersection point

Set sample colour to it

Ray generation
A ray is determined by an origin o and a direction d.
Any point on the ray is r(t) = o + td for t ≥ 0

Each image pixel corresponds to a ray going into the world

• Vertex shader:
world point → image point

• Ray generation:
image point → world ray

Perspective camera:

• Pixel (i, j) → image plane (u, v)

• In camera space, o = (0, 0, 0), d = (u, v, −d)

• Transform to world space using

(Note: We will not assume d is normalized!)

Mview =

| | | |
u v w e
| | | |
0 0 0 1

Ray tracing

For each sample (x, y):

Generate eye ray r(t) = o + td

Find the closest intersection

Get shaded colour at intersection point

Set sample colour to it

Ray-surface intersection
Given a ray r(t) = o + td, find closest intersection i.e. minimum t

Return info needed for shading:

• Position p

• Normal n

• Object ID / material properties

(Roughly the same data you would
need in a fragment shader)

Wojciech Matusik

Ray-sphere intersection
Ray equation: r(t) = o + td

Sphere equation: ||p − c||2 = R2

Intersection point must satisfy both:

||(o − c) + td||2 = R2

||d||2 t2 + 2d · (o − c) t + ||o − c||2 − R2 = 0

(Recall ||v||2 = v · v)

Quadratic equation, solve for t

3 cases:

• No solution

• One solution t1

• Two solutions t1 and t2

What do they mean geometrically?

• No solution

• One solution t1

• t1 < 0

• t1 > 0

• Two solutions t1 and t2

• t1 < t2 < 0

• t1 < 0 < t2

• 0 < t1 < t2

In general: Find all solutions, discard those with t < 0, take minimum of remaining

Find t of closest intersection

Then get intersection point from equation of ray:

p = r(t) = o + td

What about the surface normal?

n = (p − c)/||p − c||

Ray-plane intersection

Plane equation: n · (p − p0) = 0

n · (o + td − p0) = 0

t = (n · (p0 − o))/(n · d)

Ray-triangle intersection

Intersect ray with plane, then check if it is inside triangle?

any known point
on the plane

