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Rasterization vs. Ray tracing
for each shape: 
    for each sample: 
        get point where shape covers sample 
        if point is closest point seen by sample: 
            sample.colour = shade(point) 

for each sample: 
    for each shape: 
        get point where shape covers sample 
        if point is closest point seen by sample: 
            sample.colour = shade(point)



Ray tracing

For each sample (x, y): 

Generate eye ray r(t) = o + td 

Find the closest intersection 

Get shaded colour at intersection point 

Set sample colour to it



Ray-surface intersection
Given a ray r(t) = o + td, find closest intersection i.e. minimum t 

Return info needed for shading: 

• Position p 

• Normal n 

• Object ID / material properties 

(Roughly the same data you would 
need in a fragment shader)

Wojciech Matusik



Ray-plane intersection 

Plane equation: n · (p − p0) = 0 

n · (o + td − p0) = 0 

t = (n · (p0 − o))/(n · d) 

Ray-triangle intersection 

Intersect ray with plane, then check if it is inside triangle?

any known point 
on the plane



Ray-mesh intersection
Naïve approach: Test ray with all triangles, 
return the earliest hit. 

Cost = O(#triangles)! Can we speed it up? 

Construct a conservative bounding volume: 
all mesh triangles lie inside it 

Super easy to reject rays that don’t 
come close to intersecting the mesh. 

In practice, we use bounding volume hierarchies to speed things up further.



Object-oriented raytracer design
We can ray trace any shape as long as it provides the following methods: 

• bool hit(Ray o + td, real tmin, real tmax, HitRecord &rec) 

• Only consider intersections in the range tmin ≤ t ≤ tmax. 
Usually [0, ∞] for eye rays 

• If hit, write the position, normal, material, etc. 
into the HitRecord 

• Box bounding_box() 

• For early exit



Ray tracing

For each sample (x, y): 

Generate eye ray r(t) = o + td 

Find the closest intersection (p, n, …) 

Get shaded colour at intersection point 

Set sample colour to it



Shading the intersection point
Now we have position p, normal n, etc. 
We can compute other vectors v, ℓ, h, etc. as usual 

Apply your favourite reflection model, e.g. Blinn-Phong: 

L = ka 𝐼a +  𝐼i (kd max(0, n · ℓi) + ks max(0, n · hi) ) 

 
f (ℓ, v) = what fraction of incident light from direction ℓ is reflected to direction v

∑
p

f (ℓi, v)



So far, what we have done is ray casting: shoot just one ray from the eye. 

This should give us exactly the same image as we’d get from rasterization! 
 
 
 
 
 
 
 
 

Now we will also trace secondary rays to get additional effects.
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L = ka 𝐼a +  𝐼i f (ℓi, v) 

Light should only be included if it is visible from p 

• Shoot a “shadow ray” p + tℓ towards light source 

• If no intersection within interval [0, tlight], 
add its contribution to L 

Why [0, tlight] instead of [0, ∞]?

∑
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Why does this happen? 

• p lies on surface 

• p + tℓ intersects surface at t = 0 

• Floating-point arithmetic may give e.g. t = 
0.000001 

• p thinks it’s shadowed… by itself! 

Solution: Pick a small positive ε (“bias”) and 
only look for intersections in [ε, tlight].“Shadow acne”

Wojciech Matusik



Without bias With bias



Ray tracing

For each sample (x, y): 

ray = makeRay(camera, x, y) 

hit = castRay(ray, scene) 

color = shade(hit, scene) 

image[x, y] = color

color = traceRay(ray, scene)



Reflection
r = d − 2dn 

          = d − 2(n · d)n 

Perfect mirror: 

L = traceRay(p, r, scene) 

Reflective surface: 

L = […Blinn-Phong…] + kr traceRay(p, r, scene) 

 
Again, don’t forget ray bias!
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Actually, kr depends on n · d for many materials…



ka, kd coloured 
ks, kr colourless

ka, kd zero 
ks, kr coloured

Plastic Metallic



Transmission
Suppose ray passes from one material to another with 
different indices of refraction. 

Snell’s law: ηi sin θi = ηt sin θt 

t = n − ηr i 

where ηr = ηi /ηt. 

L = […] + kt traceRay(p, t, scene)

(ηr(n ⋅ i) − 1 − η2
r (1 − (n ⋅ i)2))

i
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−n

Also depends on n · d



Fresnel effect



Constant kr, kt

kr increasing with θi 

kt = 1 − kr K
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Kanazawa & NgCS184/284A

Recursive Ray Tracing

eye point

image plane

light source

Kanazawa and Ng



Kanazawa & NgCS184/284A

Recursive Ray Tracing

eye point

image plane

light source

Mirror ray 
(specular reflection)

Kanazawa and Ng



Kanazawa & NgCS184/284A

Recursive Ray Tracing

eye point

image plane

light source

 Refractive rays 
(specular transmission)

Kanazawa and Ng



Kanazawa & NgCS184/284A

Recursive Ray Tracing

eye point

image plane

light source
Shadow rays

Kanazawa and Ng



Kanazawa & NgCS184/284A

Recursive Ray Tracing

• Trace secondary rays recursively until hit a non-specular surface (or max desired levels of recursion) 
• At each hit point, trace shadow rays to test light visibility (no contribution if blocked) 
• Final pixel color is weighted sum of contributions along rays, as shown 
• Gives more sophisticated effects (e.g. specular reflection, refraction, shadows), but we will go much 

further to derive a physically-based illumination model

eye point

image plane

light source

primary ray

secondary rays

shadow rays

Kanazawa and Ng

Recursive ray tracing



Recursion depth: 1



Recursion depth: 2



Recursion depth: 3



Recursion depth: 4



• Fixed: stop if recursion depth > 
max 

• Adaptive: stop if contribution of 
ray to final pixel colour < 
threshold 

• …or whichever comes first 

 
On termination, return… diffuse 
colour? background colour? black?

When to terminate the recursion?



What ray tracing can and can’t do
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Refraction

Reflection

Shadows

Diffuse interreflection

Caustics



So far, we have learned how to make crude pictures of polygonal shapes. 

How would we make photorealistic movies of complicated shapes? 
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Tour of deeper aspects of computer graphics

Modelling Rendering Animation



Modelling

Pi
xa

r



How to define a unit circle in 2D?
Explicit: 

{(cos θ, sin θ): 0 ≤ θ < 2π}

Implicit: 

{(x, y): x2 + y2 − 1 = 0}



Explicit: 

{(x(t), y(t)): t ∈ [a, b]} 

Implicit: 

{(x, y): f (x, y) = 0} 

When is it easy to generate an arbitrary point on the curve? 

When is it easy to test if a given point lies on the curve?



{(x(t), y(t)): t ∈ [a, b]} 

Sample points at various values of t 

Connect by polyline

{(x, y): f (x, y) = 0} 

Sample f at various points (x, y) 

Draw boundary between + and − points

How to draw a curve given in one of these forms?



Representing geometry in 3D
Implicit: 

• Algebraic surfaces, distance fields 

• Constructive solid geometry 

• “Blobby” surfaces 

• Level sets

Explicit: 

• Polygon meshes 

• Parametric curves and surfaces 

• Subdivision surfaces 

• Point clouds



Curves
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We will retain the same “interface” as polylines: user specifies a sequence of 
points. Now we want to define a smooth curve based on them. 

Usually define parametrically: x(t), y(t) where 
x, y are piecewise polynomial functions a.k.a. splines



You all probably already know one way to fit a smooth function through multiple 
points: polynomial interpolation. 

 
Hard to control: curve goes beyond the range of the control points 

 
Very unstable for higher degrees!

Quadratic Cubic



Bézier curves
How can we guarantee the curve stays within the range of the control points? 

Construct the curve by recursive interpolation: de Casteljau’s algorithm a.k.a. 
“corner cutting” 

 

 

 

b1
0 = lerp(t, b0, b1)

b1
1 = lerp(t, b1, b2)

b2
0 = lerp(t, b1

0, b1
1)

Quadratic 
Bézier curve



 

 

 

 

 

b1
0 = lerp(t, b0, b1)

b1
1 = lerp(t, b1, b2)

b1
2 = lerp(t, b2, b3)

b2
0 = lerp(t, b1

0, b1
1)

b2
1 = lerp(t, b1

1, b1
2)

b3
0 = lerp(t, b2

0, b2
1)

Cubic Bézier curve





 
No longer interpolation but approximation: Curve is influenced by the control 
points but does not pass through them



Piecewise Bézier curves (Bézier splines)
Chain together multiple Bézier curves of low degree (usually cubic) 

Now we have local control: each control point only affects one or two segments 

Used basically everywhere (fonts, paths, Illustrator, PowerPoint, …)



Another strategy to create smooth shapes from a coarse 
mesh of control points: subdivision 

• Split each element by inserting new vertices 

• Update positions of all vertices by local averaging 

• Repeat… 

The desired shape is what we converge to in the limit.



Subdivision curves
One possible method: Lane-Riesenfeld 

• Insert midpoint of each edge 

• Repeat k−1 times: Average adjacent vertices 

Limit is a degree-k B-spline! g
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k = 2 k = 3

k = 1Input



Subdivision surfaces
Connectivity of surfaces is more 
complicated. Many different 
subdivision schemes are possible: 

• General polygon meshes: Catmull-
Clark, Doo-Sabin, mid-edge [Peters 
& Reif], … 

• Triangle meshes: Loop, modified 
butterfly [Zorin et al.], Sqrt(3) 
[Kobbelt], …

Doo-Sabin

mid-edge

Sqrt(3)



Catmull-Clark subdivision
Split each n-sided face into n quads 

Update vertex positions by averaging: 

• New face point = average of old face vertices 

• New edge point = average of 2 old vertices 
and 2 new face points 

• Updated vertex =  (Q + 2R + (n−3)S) 
where Q = average of n new face points, 
R = average of n new edge points, S = old vertex

1
n
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Examples



Break



Rendering
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Rendering
Our goal: given light sources and scene 
geometry, find amount of light (i.e. 
radiance) incident on camera. 
 
 
 
 

To do this, we need to know how 
surfaces transform incident radiance 
into exitant radiance

Li (p, ωi) Lo (p, ωo)



Smooth surface

Rough surface

Metals Non-metals

Real-T
im

e Rend
ering

Real-T
im

e Rend
ering



The BRDF

ωi ωo
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Bidirectional 
Reflectance 
Distribution 
Function 

fr (ωi → ωo) = Lo (x, ωo)/E(x)



Lr (x, ωr) = fr (ωi → ωr) Li (x, ωi) cos(θi) dωi∫H2



Lambertian (diffuse) material
Simplest possible model: BRDF is a constant! 

Lo(ωo) = fr Li (ωi) cos(θi) dωi 

 
           = fr Ei 

To conserve energy, fr = ρ/π where albedo ρ is ≤ 1 

Why? For constant radiance L, total flux density = L π

∫H2



BRDF acquisition: Gonioreflectometer
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MERL BRDF database

Nickel Hematite

Gold paint Pink fabricMatusik et al. 2003
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Ray tracing revisited
For each sample: 

Cast a ray into the scene 

Find the closest intersection 

Get exitant radiance at intersection point 

Set sample colour to it 

 

Lo (p, ωo) = Le (p, ωo) + fr (p, ωi → ωo) Li (p, ωi) cos(θi) dωi∫H2



Lo (p, ωo) = Le (p, ωo) + fr (p, ωi → ωo) Li (p, ωi) cos(θi) dωi 

• How to evaluate incident radiance from 
any direction (not just light sources)? 

• How to compute the integral over 
a hemisphere? 

∫H2



What is Li (p, ωi)? Simply exitant radiance from somewhere else! 

 
 
 
 
 
 
 
 
 
 
 
 
Define tr(p, ω) as the first surface point hit by the ray p + tω. 

Li (p, ωi) = Lo (tr(p, ωi), −ωi)

p

tr(p, ω)
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Lo (p, ωo) = Le (p, ωo) + fr (p, ωi → ωo) Lo (tr(p, ωi), −ωi) cos(θi) dωi 

This is an integral equation! 
Unknown quantity Lo on both sides 

Like ray tracing, we’ll evaluate it recursively

∫H2



Quick probability recap
If X is a random variable with probability distribution p(x), its expected value or 
expectation is 

E[X] =  xi pi 

E[X] =  x p(x) dx 

Expectation is linear: 

• E[X1 + X2] = E[X1] + E[X2] 

• E[aX] = a E[X]

∑

∫
(discrete)

(continuous)



The basic Monte Carlo method
If X is uniformly distributed in [a, b], then 

 

So, if I take N independent samples of X, 

 

E[ f(X)] =
1

b − a ∫
b

a
f(x) dx

1
N

N

∑
i=1

f(xi) ≈ E[ f(X)] =
1

b − a ∫
b

a
f(x) dx

∫
b

a
f(x) dx ≈

b − a
N

N

∑
i=1

f(xi) Interpretation: 

Integral = average value × domain size



Monte Carlo rendering

We need to estimate the reflectance integral fr (p, ωi → ωo) Li (p, ωi) cos(θi) dωi 

With Monte Carlo, it’s easy: 

• Uniformly sample hemisphere of 
incident directions: Xi ~ U(H2), 
probability density p(ω) = 1/(2π) 

• Evaluate integrand 
Yi = fr (p, Xi → ωo) Li (p, Xi) cos(θi) 

• MC estimator is simply FN = 2π/N  Yi

∫H2

∑



Light

Blocker



Light

100 samples per pixel

Blocker



CMU 15-462/662

Incident lighting estimator uses different 
random directions in each pixel. Some of those 
directions point towards the light, others do not. 

(Estimator is a random variable)
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Lo (p, ωo) = Le (p, ωo) + fr (p, ωi → ωo) Li (p, ωi) cos(θi) dωi 

 

incidentRadiance(x, ω): 

p = intersectScene(x, ω) 

L = p.emittedLight(−ω) 

for i = 1, …, N: 

ωi = sampleDirection(p.normal) 

L += incidentRadiance(p, ωi) * p.BRDF(ωi, −ω) * cos_θi * 2π / N 

return L

∫H2



Problem: Exponential increase in number of samples per bounce
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Solution: Just take one recursive sample per bounce! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
But take many samples per pixel, and average them.
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incidentRadiance(x, ω): 

p = intersectScene(x, ω) 

L = p.emittedLight(−ω) 

ωi = sampleDirection(p.normal) 

L += incidentRadiance(p, ωi) * p.BRDF(ωi, −ω) * cos_θi * 2π 

return L 

This is called path tracing. 

Each sample is tracing one possible path 
between the eye and a light source



1 spp 8 spp2 spp 4 spp

16 spp



Animation



Modeling

RenderingAnimation
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https://www.youtube.com/watch?v=KDvfFzFIruQ

Character animation

https://www.youtube.com/watch?v=KDvfFzFIruQ


A
kinci et al. 2012https://www.youtube.com/watch?v=chnS24QfgNY

Physics-based animation

https://www.youtube.com/watch?v=chnS24QfgNY


Animation is defined through a set of animation controls 
(degrees of freedom) whose values vary with time 

For example: 

• Character: joint angles, etc. 

• Rigid body: translation and rotation 

• Liquid: position/velocity of all particles(!)



Types of animation techniques

• Artist-specified 
(e.g. keyframing) 

• Data-driven 
(e.g. motion capture) 

• Procedural 
(e.g. simulation)

More artistic control

Less manual effort
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Andy Serkis as Gollum 
in The Two Towers
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Keyframe animation
In traditional (hand-drawn 
animation: 

• Lead animator creates 
keyframes 

• Assistant creates 
in-between frames 
(“tweening”)

Thomas & Johnston, The Illusion of Life



In computer animation, keyframes = control points, tweening = splines!

Autodesk Maya’s Graph Editor
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Motion capture

Optical Magnetic Mechanical



https://www.youtube.com/watch?v=4NU9ikjqjC0

https://www.youtube.com/watch?v=4NU9ikjqjC0


Physics-based animation (a.k.a. simulation)
Solve the equations of motion to automatically get physically realistic motion. 

e.g. Rigid bodies 

• Degrees of freedom: position, rotation 

 

⋯ 

• Challenges: collisions, frictional contact, stacking

d2x
dt2

= fext /m

d2R
dt2

=
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Deformable bodies, cloth, etc. 

Every vertex can move independently! But deformation causes internal elastic forces 

• Physically accurate: finite element method 

• Simplified approximation: mass-spring systems 
(just a bunch of particles 
connected by springs)
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Fluids (smoke, water, fire, etc.) 

Described by systems of partial differential equations 

Velocity field v(x, t): every point has its own velocity! 

 = … something involving v, , etc. …
∂v
∂t [ ∂v

∂x ]
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Physics in character animation
• Flesh 

• Hair 

• Clothing 

• …

https://vimeo.com/245424174

https://vimeo.com/245424174


Mass-spring systems
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Recall springs in 1 dimension from physics classes. 

Hooke’s law: force is proportional to displacement 

F = −k x = −k (ℓ − ℓ0) 

Potential energy: 

U = ½ k (ℓ − ℓ0)2 

In fact F = −dU/dℓ

ℓ0



In 3D, suppose a spring connects particles i and j. What should be the force fij on i due to j? 

Let’s first define the potential: 

U = ½ k ( xi − xj  − ℓ0)2 

Then fij = −∂U/∂xi ⇒ 

fij = −k ( xi − xj  − ℓ0)  

= −k ( xij  − ℓ0) x̂ij 

Similarly fji = −∂U/∂xj (but it’s also just −fij) 

Exercise: Derive this expression from −∂U/∂xi. Optional: Look up multivariable calculus 
identities, chain rule, etc. so you don’t have to differentiate componentwise.

∥ ∥

∥ ∥
xi − xj

∥xi − xj∥

∥ ∥



Time stepping
Equations of motion: 

 = vi         = mi−1  fij 

Take small time steps from time t0 to t1, then t1 to t2, and so on… 

vi (tn+1) ≈ vi (tn) + Δt mi−1  fij (tn) 

xi (tn+1) ≈ xi (tn) + Δt vi (tn+1) 

Tradeoff: Smaller Δt → more accurate, but more computation 
to reach any desired t. 

dxi

dt
dvi

dt ∑

∑

W
itkin &
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araff 2001



How to model a rectangular sheet of cloth? 

• Structural springs 



How to model a rectangular sheet of cloth? 

• Structural springs 

• Shear springs 



How to model a rectangular sheet of cloth? 

• Structural springs 

• Shear springs 

• Bending springs



How to model a rectangular sheet of cloth? 

• Structural springs 

• Shear springs 

• Bending springs



Skeel Lee

https://www.youtube.com/watch?v=L4oFuXovsrM

https://www.youtube.com/watch?v=L4oFuXovsrM


Skeel Lee

https://www.youtube.com/watch?v=RMqgajfZSvY

https://www.youtube.com/watch?v=RMqgajfZSvY


Skeel Leehttps://www.youtube.com/watch?v=JncQOCg9FS0

https://www.youtube.com/watch?v=JncQOCg9FS0
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The End


