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Rasterization vs. Ray tracing

for each shape:
for each sample:
get point where shape covers sample

it pointis closest point seen by sample:

sample.colour = shade(point)

for each sample:
for each shape:
get point where shape covers sample

it point is closest point seen by sample:

sample.colour = shade(point)
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Ray tracing

For each sample (x, y): Image |
Camera / Light Source
Generate eye ray r(t) = o + td f]f@s ,
S View Ray
Find the closest intersection _ 7

Get shaded colour at intersection point

' S Object
Set sample colour to it cene Objec



Ray-surface intersection

Given a ray r(t) = o + td, find closest intersection i.e. minimum t
Return info needed for shading:
® Position p

® Normal n

® Object ID / material properties

(Roughly the same data you would
need in a fragment shader)

Wojciech Matusik



Ray-plane intersection

Plane equation: n - (p — po) = 0 any known point
— _ onthe plane

n-(o+td—pg =0
t=(n-(po—0))/(n-d)

Ray-triangle intersection

Intersect ray with plane, then check it it is inside triangle?




Ray-mesh intersection

Naive approach: Test ray with all triangles,
return the earliest hit.

Cost = O

triangles)! Can we speed it up?

Construct a conservative bounding volume:
all mesh triangles lie inside it

Super easy to reject rays that don't
come close to intersecting the mesh.

In practice, we use bounding volume hierarchies to speed things up further.
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Object-oriented raytracer design

We can ray trace any shape as long as it provides the following methods:

e bool hit(Ray o + td, real tnin, real tmnax, Hi1tRecord &rec)

® Only consider intersections in the range tmin < t < thax.

Usually [0, =] for eye rays ; i
® |f hit, write the position, normal, material, etc. /

into the HitRecord

e Box bounding_box ()

® For early exit



Ray tracing

For each sample (x, y): Image |
Camera / Light Source

Generate eye ray r(t) = o + td j’/@s

View Ray

Find the closest intersection (p, n, ...)

Get shaded colour at intersection point

‘ S Object
Set sample colour to it cene Objec
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Shading the intersection point -

"\ : n /7
0 v
Now we have position p, normal n, etc.

We can compute other vectors v, £, h, etc. as usual

Apply your tavourite reflection model, e.g. Blinn-Phong:

L =k, I, + 2 (kg max(0, n - £) + ks max(0, n - hi)p)
| |
f (€, v)

f(€, v) = what fraction of incident light from direction € is reflected to direction v



So far, what we have done is ray casting: shoot just one ray from the eye.

This should give us exactly the same image as we'd get from rasterization!
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Now we will also trace secondary rays to get additional effects.



[ = I(a I, + 2 I; f(£,~, V)

Light should only be included it it is visible from p
® Shoot a “shadow ray” p + t€ towards light source

® |f no intersection within interval [0, tignt],
add its contribution to L

Why [0, tiight] instead of [0, o]?

Marschner & Shirley



Why does this happen?
® p lies on surtace

® p + tf intersects surface att = 0

® Floating-point arithmetic may give e.g. t =
0.000001

® p thinks it's shadowed... by itself!

_ B eeeicugs  Solution: Pick a small positive € (“bias”) and
Z " only look tor intersections in [g, tightl.
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Ray tl‘aCing Camera / Light Source
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For each sample (x, y): /<

ray = makeRay(camera, X, y) \\ Scene Object

View Ray

hit = castRay(ray, scene)
color = traceRay(ray, scene)
color = shade(hit, scene)

imagelx, y] = color



Reflection

r=d - 2d, d
=d - 2(n - d)n

Perfect mirror:

L = traceRay(p, r, scene)

Reflective surface: Actually, k; depends on n - d for many materials..

/

L = [...Blinn-Phong...] + k, traceRay(p, r, scene)
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Again, don't forget ray bias!



k., kg coloured k., kqzero

ks, k, colourless ks, k, coloured

Plastic Metallic



Transmission

> I

Suppose ray passes from one material to another with i
different indices of refraction.

I Sin 6,‘ = I Sin Bt

t=(ﬂr(n‘i)—\/l—ﬂrz(l—(n-i)z))n—nri —n \t

where n, = n;/n-.

L =[...] + k¢ traceRay(p, t, scene)

AN






Constant k;, k;

o

k; increasing with 6;

I<t=1_l<r

Keenan Crane
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eye point ..

image plane

light source <IVCA>GI>
J LA

Kanazawa and Ng



Mirror ray
(specular reflection)

4
eye point ...

Image plane

light source <]v<A>4>
J LA

Kanazawa and Ng



\ Refractive rays

(specular transmission)

4
eye point ...

image plane

light source <YCA)GI>
J LA

Kanazawa and Ng



4
eye point ...

image plane Shadow rays

light source <?(A>dl>
J LA

Kanazawa and Ng



secondary rays

Recursive ray tracing

primary ray

AT}
eye point .

([ L] [

image plane shadow rays

light source quA>4l>
J LA

Kanazawa and Ng






Recursion depth: 2



Recursion depth: 3



Recursion depth: 4



When to terminate the recursion?
Qe

® Fixed: stop if recursion depth >
max

® Adaptive: stop if contribution of
ray to final pixel colour <

threshold

® ..or whichever comes first

On termination, return... diffuse
colour? background colour? black?



What ray tracing can and can’t do

Diffuse interreflection

Refraction

v
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-+ Reflection ...
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So far, we have learned how to make crude pictures of polygonal shapes.

Thirey et al. 2010

S

0O

o
@))
C
(),
O
O
C
| -
(qV)
0,

How would we make photorealistic movies of complicated shapes?

RENDERING ANIMATION MODELING



Tour of deeper aspects of computer graphics

Modelling Rendering Animation



Pixar



How to define a unit circle in 2D?

Explicit:

{(cos B,sin B): 0 < 6 < 2}

Implicit:

{x, y): x2+y2 -1 =0}




Explicit: Implicit:

{(x(1), y(t): te[a, bl}

N\
N
N

When is it easy to generate an arbitrary point on the curve?

When is it easy to test if a given point lies on the curve?



How to a curve given in one of these forms?

{(x(1), y(1): t € [a, b]} {(x, y): f(x, y) = O}

N\ A

Sample points at various values of t Sample f at various points (x, y)

Connect by polyline Draw boundary between + and — points



Representing geometry in 3D

Explicit: Implicit:

® Polygon meshes ® Algebraic surfaces, distance fields
® Parametric curves and surfaces ® Constructive solid geometry

® Subdivision surfaces ® “Blobby” surtaces

® | evel sets

® Point clouds




Xu et al. 2014
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We will retain the same "interface” as polylines: user specifies a sequence of
points. Now we want to define a smooth curve based on them.

Usually define parametrically: x(t), y(t) where
X, y are piecewise polynomial functions a.k.a. splines




You all probably already know one way to fit a smooth function through multiple
points: polynomial interpolation.

g Quadratic/

Hard to control: curve goes beyond the range of the control points

Very unstable for higher degrees!




Bézier curves

How can we guarantee the curve stays within the range ot the control points?

Construct the curve by recursive interpolation: a.k.a.

11 4

b(l) = lerp(z, by, b)
b% — ‘erp(l‘, bl’ b2)

Quadratic
Bézier curve b,

b(z) = lerp(t, b, b%)



b, = lerp(z, by, by)
b! = lerp(t,b,,b,)
b, = lerp(t, b,, by)

b% = lerp(t, b, b%)
b% = lerp(t, bl b%)

bg = lerp(t, bz, b%)

Cubic Bézier curve
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No longer interpolation but approximation: Curve is influenced by the control
points but does not pass through them




Piecewise Bézier curves (Bézier splines)

Chain together multiple Bézier curves of low degree (usually cubic)

------------

Now we have local control: each control point only affects one or two segments

Used basically everywhere (fonts, paths, lllustrator, PowerPoint, ...)



Another strategy to create smooth shapes from a coarse
mesh of control points: subdivision

® Split each element by inserting new vertices

® Update positions of all vertices by local averaging

® Repeat...

The desired shape is what we converge to in the limit.




Subdivision curves

One possible method: Lane-Riesenteld
® |nsert midpoint of each edge
® Repeat k—1 times: Average adjacent vertices

Limit is a degree-k B-spline!
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Subdivision surfaces

Connectivity of surfaces is more
complicated. Many different Doo-Sabin
subdivision schemes are possible:

® General polygon meshes: Catmull-
Clark, Doo-Sabin, mid-edge [Peters [, %~
& Reif], ... \\/

mid-edge

® Triangle meshes: Loop, moditied
buttertly [Zorin et al.], Sqrt(3)
[Kobbelt], ...
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Catmull-Clark subdivision

Split each n-sided face into n quads
Update vertex positions by averaging:
® New face point = average of old face vertices

® New edge point = average of 2 old vertices
and 2 new face points

e Updated vertex = %(Q + 2R + (n—3)S)
where Q = average of n new face points,
R = average of n new edge points, S = old vertex

Pixar



Examples
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Rendering

vAY Our goal: given light sources and scene
< P | =
P geometry, find amount of light (i.e.

i‘ ) incident on camera.

f"
-

Li(p. cj x Lo(p, wo) To do this, we need to know how
Q/' surfaces transtorm radiance

into radiance




Rough surface
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The BRDF

%etector

Bidirectional
Reflectance
Distribution
Function

solydeury yjeindwon)
JO s[ejuswepun

f (w0 = wo) = Lo (X, w0)/E(x)






Lambertian (diffuse) material

Simplest possible model: BRDF is a constant!

Lo(wo) = J f- Li (007) cos(8) dw,
H2

=fr =

To conserve energy, f, = o/t where pis <1

Why? For constant radiance L, total flux density = L m



BRDF acquisition: Gonioreflectometer

Source driver hoop

Reflectance \‘

nght source
detector

Sample area
* Rotating annul

X

Transmittance detector
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MERL BRDF database
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Mdtusik et al. 2003
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Ray tracing revisited

For each sample:

Cast a ray into the scene

Find the closest intersection

Get at intersection point

Set sample colour to it

Lo (p, @) = Le(p, wo) + J f-(p, Wi = wo) Li(p, w)) cos(8) dw;
H2



Lo (P, wo) — Le (P, wo) T J

® How to evaluate incident radiance from
any direction (not just light sources)?

® How to compute the integral over
a hemisphere?




What is Li(p, w)? Simply exitant radiance from somewhere else!
tr(p, )

Detine tr(p, w) as the first surface point hit by the ray p + tw.

Li(p, w) = L, (tr(p, w)), —w))

auelD) UBUDDY



Lo (P: mo) — Le (P, wo) + I 7L‘r (P: W wo) Lo (tr(P, C"-)i): _wi) COS(BI) dOO,'
j2p

This is an integral equation!
Unknown quantity L, on both sides

Like ray tracing, we'll evaluate it recursively




Quick probability recap

't X'is a random variable with probability distribution p(x), its or
1S
EIX] = Z Xi Pi (discrete)
E[X] = JX p(x) dx (continuous)

Expectation is

o £IX, + Xo] = E[Xq] + E[X5]

® FlaX] =a E[X]




The basic Monte Carlo method

It Xis unitormly distributed in [a, b], then

1 b
E[/(X)] = b—aJ J(x) dx

So, it | take N independent samples of X,

b
J f(x)dx

a

LS fioy ~ ELGOT = —
N & b

— d

b N
L fe) dx 2 — Z}f(x»



Monte Carlo rendering

We need to estimate the reflectance integral J f(p, Wi = W) Li(p, w;) cos(B) dw;
H2

With Monte Carlo, it's easy:

® Uniformly sample hemisphere of
incident directions: X; ~ U(H2),
probability density p(w) = 1/(2m)

® Evaluate integrand
Yi=1(p, Xi = wo) Li(p, X)) cos(6)

e MC estimator is simply Fy = 2i/N Z Yi




L\ light

Blocker
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- (Estimator is a random variable)

Incident lighting estimator uses different
random directions in each pixel. Some of those
directions point towards the light, others do not.
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Lo (p, ©0) = Le(p, o) + J fr(p, @i = o) Li(p, w)) cos(6) dw;
2
incidentRadiance(x, w):
p = intersectScene(x, w)
L = p.emittedLight(—w)
fori=1, ..., N:
wi = sampleDirection(p.normal)

L += incidentRadiance(p, wi) * p.BRDF(wi, —w) * cos_Bi * 2n/ N

return L



Problem: Exponential increase in number ot samples per bounce

Wojciech Matusik



Solution: Just take one recursive sample per bounce!

Wojciech Matusik

But take many samples per pixel, and average them.



incidentRadiance(x, w):
p = intersectScene(x, w)
L = p.emittedLight(—ow)

wi = sampleDirection(p.normal)

L += incidentRadiance(p, wi) * p.BRDF(wi, —w) * cos_Bi * 2n

return L

This is called path tracing.

Each sample is tracing one possible path
between the eye and a light source
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H Animation

Rendering

Modeling



Character animation ;
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https://www.youtube.com/watch?v=KDviFzF|uQ

McAdams et al. 2011



https://www.youtube.com/watch?v=KDvfFzFIruQ

Os://www.youtube.com/watch?v=chnS24QfgNY
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https://www.youtube.com/watch?v=chnS24QfgNY

Animation is defined through a set of animation controls
(degrees of freedom) whose values vary with time

For example:

® Character: joint angles, etc.

® Rigid body: translation and rotation

® |iquid: position/velocity of all particles(!)




Types of animation techniques

More artistic control

® Artist-specified
(e.g. keyframing)

"
e Andy Serkisras Gpllum
8 in The Two ToWers

® Data-driven
(e.g. motion capture)

hew Lailler

§

® Procedural
(e.g. simulation)

Less manual effort

Thurey et al. 2010 (



Keyframe animation

In traditional (hand-drawn
animation:

® | ead animator creates
keyframes

® Assistant creates
in-between frames
(“tweening”)

Thomas & Johnston, The lllusion of Life



In computer animation, keyframes = control points, tweening = splines!

#™. Graph Editor
Edit View Seledd Curves Keys Tangents List Show Help
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Autodesk Maya’'s Graph Editor



CAVE Academy




Motion capture

" Mechanical

Magnetic




CAESAR

https://www.youtube.com/watch?v=4NU?ikjgjCO



https://www.youtube.com/watch?v=4NU9ikjqjC0

Physics-based animation (a.k.a. simulation)

Solve the equations of motion to automatically get physically realistic motion.
e.g. Rigid bodies

® Degrees of freedom: position, rotation

d’x

T2 = leu/m
d’R

dr2
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Deformable bodies, cloth, etc.

Every vertex can move independently! But deformation causes internal elastic forces
® Physically accurate: finite element method
® Simplified approximation: mass-spring systems

(just @ bunch of particles
connected by springs)
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Fluids (smoke, water, fire, etc.)

Described by systems of partial ditterential equations

Velocity field v(x, t): every point has its own velocity!

. something involving v, e etc. ...
X

av - [ ov ]
gy ..




Physics in character animation

® Flesh l
® Hair v
® ClOthiﬂg /“(J"—-——i )

>

https://vimeo.com/245424174

Smith et al. 2018


https://vimeo.com/245424174
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Mass-spring systems



Recall springs in 1 dimension from physics classes.

Hooke's law: force is proportional to displacement

F=—-kx=-k(¢ - ¢

Potential energy:

U="2 k(€ — £p)?

In fact F = —dU/d?




In 3D, suppose a spring connects particles i and j. What should be the force fjj on i due to j?

Let's first define the potential:
U="2k(||xi — x|| = €0)3 . VV VY .

Then f,’j = —8U/8x,- —

f,’j = —K (HX,‘ — Xj” — fo)
1x; = x;
= —k (||x;l| = €o) X

Similarly f; = —dU/dx; (but it's also just —¥;)

Derive this expression from —dU/dx;. Optional: Look up multivariable calculus
identities, chain rule, etc. so you don’t have to differentiate componentwise.



Time stepping

Equations of motion:

dx; dv.
L = Vi dtl = I’T),“1 Z f,‘j

ds

Take small from time ty to t1, then t; to tp, and so on...

Vi(th+1) = vi(ty) + At m;~ Z fii (t.)
X (the1) = Xi(tn) + At vi(ths1)

Tradeoff: Smaller At = more accurate, but more computation
to reach any desired t.
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How to model a rectangular sheet of cloth?

® Structural springs
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How to model a rectangular sheet of cloth?
® Structural springs

® Shear springs
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How to model a rectangular sheet of cloth?

® Structural springs
® Shear springs

® Bending springs
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® Structural springs

springs

® Shear

® Bending springs
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CG:SKEELOGY
cg.skeelogy.com

.youtube.com/watch?v=1L40oFu

" NEGATIVE EXAMPLE: NO SHEAR AND BEND SPRINGS

997 [993(S


https://www.youtube.com/watch?v=L4oFuXovsrM
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Cq.S f(’:“:‘_\o V.

DgY.com

.

ube.com/watch?v=F

NEGATIVE EXAMPLE: NO BEND SPRINGS
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https://www.youtube.com/watch?v=RMqgajfZSvY



https://www.youtube.com/watch?v=JncQOCg9FS0




