
H
en

rik
 W

an
n

Je
ns

en

Computer
Graphics

GRAPHICS & VISION
SUMMER SCHOOL

Rasterization vs. Ray tracing
for each shape:
 for each sample:
 get point where shape covers sample
 if point is closest point seen by sample:
 sample.colour = shade(point)

for each sample:
 for each shape:
 get point where shape covers sample
 if point is closest point seen by sample:
 sample.colour = shade(point)

Ray tracing

For each sample (x, y):

Generate eye ray r(t) = o + td

Find the closest intersection

Get shaded colour at intersection point

Set sample colour to it

Ray-surface intersection
Given a ray r(t) = o + td, find closest intersection i.e. minimum t

Return info needed for shading:

• Position p

• Normal n

• Object ID / material properties

(Roughly the same data you would
need in a fragment shader)

Wojciech Matusik

Ray-plane intersection

Plane equation: n · (p − p0) = 0

n · (o + td − p0) = 0

t = (n · (p0 − o))/(n · d)

Ray-triangle intersection

Intersect ray with plane, then check if it is inside triangle?

any known point
on the plane

Ray-mesh intersection
Naïve approach: Test ray with all triangles,
return the earliest hit.

Cost = O(#triangles)! Can we speed it up?

Construct a conservative bounding volume:
all mesh triangles lie inside it

Super easy to reject rays that don’t
come close to intersecting the mesh.

In practice, we use bounding volume hierarchies to speed things up further.

Object-oriented raytracer design
We can ray trace any shape as long as it provides the following methods:

• bool hit(Ray o + td, real tmin, real tmax, HitRecord &rec)

• Only consider intersections in the range tmin ≤ t ≤ tmax.
Usually [0, ∞] for eye rays

• If hit, write the position, normal, material, etc.
into the HitRecord

• Box bounding_box()

• For early exit

Ray tracing

For each sample (x, y):

Generate eye ray r(t) = o + td

Find the closest intersection (p, n, …)

Get shaded colour at intersection point

Set sample colour to it

Shading the intersection point
Now we have position p, normal n, etc.
We can compute other vectors v, ℓ, h, etc. as usual

Apply your favourite reflection model, e.g. Blinn-Phong:

L = ka 𝐼a + 𝐼i (kd max(0, n · ℓi) + ks max(0, n · hi))

f (ℓ, v) = what fraction of incident light from direction ℓ is reflected to direction v

∑
p

f (ℓi, v)

So far, what we have done is ray casting: shoot just one ray from the eye.

This should give us exactly the same image as we’d get from rasterization!

Now we will also trace secondary rays to get additional effects.

H
ug

he
s

et
 a

l.

L = ka 𝐼a + 𝐼i f (ℓi, v)

Light should only be included if it is visible from p

• Shoot a “shadow ray” p + tℓ towards light source

• If no intersection within interval [0, tlight],
add its contribution to L

Why [0, tlight] instead of [0, ∞]?

∑

M
ar

sc
hn

er
 &

 S
hi

rle
y

Why does this happen?

• p lies on surface

• p + tℓ intersects surface at t = 0

• Floating-point arithmetic may give e.g. t =
0.000001

• p thinks it’s shadowed… by itself!

Solution: Pick a small positive ε (“bias”) and
only look for intersections in [ε, tlight].“Shadow acne”

Wojciech Matusik

Without bias With bias

Ray tracing

For each sample (x, y):

ray = makeRay(camera, x, y)

hit = castRay(ray, scene)

color = shade(hit, scene)

image[x, y] = color

color = traceRay(ray, scene)

Reflection
r = d − 2dn

 = d − 2(n · d)n

Perfect mirror:

L = traceRay(p, r, scene)

Reflective surface:

L = […Blinn-Phong…] + kr traceRay(p, r, scene)

Again, don’t forget ray bias!

d

n

r

p

C
o

o
k

et
 a

l.
19

84

Actually, kr depends on n · d for many materials…

ka, kd coloured
ks, kr colourless

ka, kd zero
ks, kr coloured

Plastic Metallic

Transmission
Suppose ray passes from one material to another with
different indices of refraction.

Snell’s law: ηi sin θi = ηt sin θt

t = n − ηr i

where ηr = ηi /ηt.

L = […] + kt traceRay(p, t, scene)

(ηr(n ⋅ i) − 1 − η2
r (1 − (n ⋅ i)2))

i

n

t

p

−n

Also depends on n · d

Fresnel effect

Constant kr, kt

kr increasing with θi

kt = 1 − kr K
ee

na
n

C
ra

ne

Kanazawa & NgCS184/284A

Recursive Ray Tracing

eye point

image plane

light source

Kanazawa and Ng

Kanazawa & NgCS184/284A

Recursive Ray Tracing

eye point

image plane

light source

Mirror ray
(specular reflection)

Kanazawa and Ng

Kanazawa & NgCS184/284A

Recursive Ray Tracing

eye point

image plane

light source

 Refractive rays
(specular transmission)

Kanazawa and Ng

Kanazawa & NgCS184/284A

Recursive Ray Tracing

eye point

image plane

light source
Shadow rays

Kanazawa and Ng

Kanazawa & NgCS184/284A

Recursive Ray Tracing

• Trace secondary rays recursively until hit a non-specular surface (or max desired levels of recursion)
• At each hit point, trace shadow rays to test light visibility (no contribution if blocked)
• Final pixel color is weighted sum of contributions along rays, as shown
• Gives more sophisticated effects (e.g. specular reflection, refraction, shadows), but we will go much

further to derive a physically-based illumination model

eye point

image plane

light source

primary ray

secondary rays

shadow rays

Kanazawa and Ng

Recursive ray tracing

Recursion depth: 1

Recursion depth: 2

Recursion depth: 3

Recursion depth: 4

• Fixed: stop if recursion depth >
max

• Adaptive: stop if contribution of
ray to final pixel colour <
threshold

• …or whichever comes first

On termination, return… diffuse
colour? background colour? black?

When to terminate the recursion?

What ray tracing can and can’t do

Tu
rn

er
 W

hi
tt

ed

H
en

rik
 W

an
n

Je
ns

en

Refraction

Reflection

Shadows

Diffuse interreflection

Caustics

So far, we have learned how to make crude pictures of polygonal shapes.

How would we make photorealistic movies of complicated shapes?

le
ar

no
p

en
g

l.c
o

m

Fe
ng

 e
t a

l.
20

22

Th
ür

ey
 e

t
al

. 2
01

0

RENDERING ANIMATION MODELING

Tour of deeper aspects of computer graphics

Modelling Rendering Animation

Modelling

Pi
xa

r

How to define a unit circle in 2D?
Explicit:

{(cos θ, sin θ): 0 ≤ θ < 2π}

Implicit:

{(x, y): x2 + y2 − 1 = 0}

Explicit:

{(x(t), y(t)): t ∈ [a, b]}

Implicit:

{(x, y): f (x, y) = 0}

When is it easy to generate an arbitrary point on the curve?

When is it easy to test if a given point lies on the curve?

{(x(t), y(t)): t ∈ [a, b]}

Sample points at various values of t

Connect by polyline

{(x, y): f (x, y) = 0}

Sample f at various points (x, y)

Draw boundary between + and − points

How to draw a curve given in one of these forms?

Representing geometry in 3D
Implicit:

• Algebraic surfaces, distance fields

• Constructive solid geometry

• “Blobby” surfaces

• Level sets

Explicit:

• Polygon meshes

• Parametric curves and surfaces

• Subdivision surfaces

• Point clouds

Curves

m
ax

za
ra

d
o

zn
al

e2
.b

lo
g

sp
o

t.c
o

m

La
ss

et
er

 1
98

7

Xu et al. 2014

We will retain the same “interface” as polylines: user specifies a sequence of
points. Now we want to define a smooth curve based on them.

Usually define parametrically: x(t), y(t) where
x, y are piecewise polynomial functions a.k.a. splines

You all probably already know one way to fit a smooth function through multiple
points: polynomial interpolation.

Hard to control: curve goes beyond the range of the control points

Very unstable for higher degrees!

Quadratic Cubic

Bézier curves
How can we guarantee the curve stays within the range of the control points?

Construct the curve by recursive interpolation: de Casteljau’s algorithm a.k.a.
“corner cutting”

b1
0 = lerp(t, b0, b1)

b1
1 = lerp(t, b1, b2)

b2
0 = lerp(t, b1

0, b1
1)

Quadratic
Bézier curve

b1
0 = lerp(t, b0, b1)

b1
1 = lerp(t, b1, b2)

b1
2 = lerp(t, b2, b3)

b2
0 = lerp(t, b1

0, b1
1)

b2
1 = lerp(t, b1

1, b1
2)

b3
0 = lerp(t, b2

0, b2
1)

Cubic Bézier curve

No longer interpolation but approximation: Curve is influenced by the control
points but does not pass through them

Piecewise Bézier curves (Bézier splines)
Chain together multiple Bézier curves of low degree (usually cubic)

Now we have local control: each control point only affects one or two segments

Used basically everywhere (fonts, paths, Illustrator, PowerPoint, …)

Another strategy to create smooth shapes from a coarse
mesh of control points: subdivision

• Split each element by inserting new vertices

• Update positions of all vertices by local averaging

• Repeat…

The desired shape is what we converge to in the limit.

Subdivision curves
One possible method: Lane-Riesenfeld

• Insert midpoint of each edge

• Repeat k−1 times: Average adjacent vertices

Limit is a degree-k B-spline! g
ilg

am
ec

K
ee

na
n

C
ra

ne

k = 2 k = 3

k = 1Input

Subdivision surfaces
Connectivity of surfaces is more
complicated. Many different
subdivision schemes are possible:

• General polygon meshes: Catmull-
Clark, Doo-Sabin, mid-edge [Peters
& Reif], …

• Triangle meshes: Loop, modified
butterfly [Zorin et al.], Sqrt(3)
[Kobbelt], …

Doo-Sabin

mid-edge

Sqrt(3)

Catmull-Clark subdivision
Split each n-sided face into n quads

Update vertex positions by averaging:

• New face point = average of old face vertices

• New edge point = average of 2 old vertices
and 2 new face points

• Updated vertex = (Q + 2R + (n−3)S)
where Q = average of n new face points,
R = average of n new edge points, S = old vertex

1
n

Pi
xa

r

Examples

Break

Rendering

Ja
m

es
 K

aj
iy

a

Rendering
Our goal: given light sources and scene
geometry, find amount of light (i.e.
radiance) incident on camera.

To do this, we need to know how
surfaces transform incident radiance
into exitant radiance

Li (p, ωi) Lo (p, ωo)

Smooth surface

Rough surface

Metals Non-metals

Real-T
im

e Rend
ering

Real-T
im

e Rend
ering

The BRDF

ωi ωo

Fund
am

entals o
f

C
o

m
p

uter G
rap

hics

Bidirectional
Reflectance
Distribution
Function

fr (ωi → ωo) = Lo (x, ωo)/E(x)

Lr (x, ωr) = fr (ωi → ωr) Li (x, ωi) cos(θi) dωi∫H2

Lambertian (diffuse) material
Simplest possible model: BRDF is a constant!

Lo(ωo) = fr Li (ωi) cos(θi) dωi

 = fr Ei

To conserve energy, fr = ρ/π where albedo ρ is ≤ 1

Why? For constant radiance L, total flux density = L π

∫H2

BRDF acquisition: Gonioreflectometer

C
o

m
p

uter G
rap

hics: Princip
les and

 Practice

MERL BRDF database

Nickel Hematite

Gold paint Pink fabricMatusik et al. 2003

H
enrik W

ann Jensen

Ray tracing

H
enrik W

ann Jensen

Global illumination

Ray tracing revisited
For each sample:

Cast a ray into the scene

Find the closest intersection

Get exitant radiance at intersection point

Set sample colour to it

Lo (p, ωo) = Le (p, ωo) + fr (p, ωi → ωo) Li (p, ωi) cos(θi) dωi∫H2

Lo (p, ωo) = Le (p, ωo) + fr (p, ωi → ωo) Li (p, ωi) cos(θi) dωi

• How to evaluate incident radiance from
any direction (not just light sources)?

• How to compute the integral over
a hemisphere?

∫H2

What is Li (p, ωi)? Simply exitant radiance from somewhere else!

Define tr(p, ω) as the first surface point hit by the ray p + tω.

Li (p, ωi) = Lo (tr(p, ωi), −ωi)

p

tr(p, ω)

K
eenan C

rane

Lo (p, ωo) = Le (p, ωo) + fr (p, ωi → ωo) Lo (tr(p, ωi), −ωi) cos(θi) dωi

This is an integral equation!
Unknown quantity Lo on both sides

Like ray tracing, we’ll evaluate it recursively

∫H2

Quick probability recap
If X is a random variable with probability distribution p(x), its expected value or
expectation is

E[X] = xi pi

E[X] = x p(x) dx

Expectation is linear:

• E[X1 + X2] = E[X1] + E[X2]

• E[aX] = a E[X]

∑

∫
(discrete)

(continuous)

The basic Monte Carlo method
If X is uniformly distributed in [a, b], then

So, if I take N independent samples of X,

E[f(X)] =
1

b − a ∫
b

a
f(x) dx

1
N

N

∑
i=1

f(xi) ≈ E[f(X)] =
1

b − a ∫
b

a
f(x) dx

∫
b

a
f(x) dx ≈

b − a
N

N

∑
i=1

f(xi) Interpretation:

Integral = average value × domain size

Monte Carlo rendering

We need to estimate the reflectance integral fr (p, ωi → ωo) Li (p, ωi) cos(θi) dωi

With Monte Carlo, it’s easy:

• Uniformly sample hemisphere of
incident directions: Xi ~ U(H2),
probability density p(ω) = 1/(2π)

• Evaluate integrand
Yi = fr (p, Xi → ωo) Li (p, Xi) cos(θi)

• MC estimator is simply FN = 2π/N Yi

∫H2

∑

Light

Blocker

Light

100 samples per pixel

Blocker

CMU 15-462/662

Incident lighting estimator uses different
random directions in each pixel. Some of those
directions point towards the light, others do not.

(Estimator is a random variable)

K
eenan C

rane

Lo (p, ωo) = Le (p, ωo) + fr (p, ωi → ωo) Li (p, ωi) cos(θi) dωi

incidentRadiance(x, ω):

p = intersectScene(x, ω)

L = p.emittedLight(−ω)

for i = 1, …, N:

ωi = sampleDirection(p.normal)

L += incidentRadiance(p, ωi) * p.BRDF(ωi, −ω) * cos_θi * 2π / N

return L

∫H2

Problem: Exponential increase in number of samples per bounce

W
o

jc
ie

ch
 M

at
us

ik

Solution: Just take one recursive sample per bounce!

But take many samples per pixel, and average them.

W
o

jc
ie

ch
 M

at
us

ik

incidentRadiance(x, ω):

p = intersectScene(x, ω)

L = p.emittedLight(−ω)

ωi = sampleDirection(p.normal)

L += incidentRadiance(p, ωi) * p.BRDF(ωi, −ω) * cos_θi * 2π

return L

This is called path tracing.

Each sample is tracing one possible path
between the eye and a light source

1 spp 8 spp2 spp 4 spp

16 spp

Animation

Modeling

RenderingAnimation

M
cA

d
am

s
et

 a
l.

20
11

https://www.youtube.com/watch?v=KDvfFzFIruQ

Character animation

https://www.youtube.com/watch?v=KDvfFzFIruQ

A
kinci et al. 2012https://www.youtube.com/watch?v=chnS24QfgNY

Physics-based animation

https://www.youtube.com/watch?v=chnS24QfgNY

Animation is defined through a set of animation controls
(degrees of freedom) whose values vary with time

For example:

• Character: joint angles, etc.

• Rigid body: translation and rotation

• Liquid: position/velocity of all particles(!)

Types of animation techniques

• Artist-specified
(e.g. keyframing)

• Data-driven
(e.g. motion capture)

• Procedural
(e.g. simulation)

More artistic control

Less manual effort

M
at

th
ew

 L
ai

lle
r

Andy Serkis as Gollum
in The Two Towers

Th
ür

ey
 e

t a
l.

20
10

Keyframe animation
In traditional (hand-drawn
animation:

• Lead animator creates
keyframes

• Assistant creates
in-between frames
(“tweening”)

Thomas & Johnston, The Illusion of Life

In computer animation, keyframes = control points, tweening = splines!

Autodesk Maya’s Graph Editor

C
A

VE A
cad

em
y

Motion capture

Optical Magnetic Mechanical

https://www.youtube.com/watch?v=4NU9ikjqjC0

https://www.youtube.com/watch?v=4NU9ikjqjC0

Physics-based animation (a.k.a. simulation)
Solve the equations of motion to automatically get physically realistic motion.

e.g. Rigid bodies

• Degrees of freedom: position, rotation

⋯

• Challenges: collisions, frictional contact, stacking

d2x
dt2

= fext /m

d2R
dt2

=

Sh
in

ar
 e

t a
l.

20
08

Deformable bodies, cloth, etc.

Every vertex can move independently! But deformation causes internal elastic forces

• Physically accurate: finite element method

• Simplified approximation: mass-spring systems
(just a bunch of particles
connected by springs)

Fe
ng

 e
t a

l.
20

22

Irv
in

g
 e

t a
l.

20
07

Fluids (smoke, water, fire, etc.)

Described by systems of partial differential equations

Velocity field v(x, t): every point has its own velocity!

 = … something involving v, , etc. …
∂v
∂t [∂v

∂x]

Sm
ith

 e
t a

l.
 2

01
8

Physics in character animation
• Flesh

• Hair

• Clothing

• …

https://vimeo.com/245424174

https://vimeo.com/245424174

Mass-spring systems

C
ho

i &
 K

o
 2

00
2

Se
lle

 e
t a

l.
20

08

Recall springs in 1 dimension from physics classes.

Hooke’s law: force is proportional to displacement

F = −k x = −k (ℓ − ℓ0)

Potential energy:

U = ½ k (ℓ − ℓ0)2

In fact F = −dU/dℓ

ℓ0

In 3D, suppose a spring connects particles i and j. What should be the force fij on i due to j?

Let’s first define the potential:

U = ½ k (xi − xj − ℓ0)2

Then fij = −∂U/∂xi ⇒

fij = −k (xi − xj − ℓ0)

= −k (xij − ℓ0) x̂ij

Similarly fji = −∂U/∂xj (but it’s also just −fij)

Exercise: Derive this expression from −∂U/∂xi. Optional: Look up multivariable calculus
identities, chain rule, etc. so you don’t have to differentiate componentwise.

∥ ∥

∥ ∥
xi − xj

∥xi − xj∥

∥ ∥

Time stepping
Equations of motion:

 = vi = mi−1 fij

Take small time steps from time t0 to t1, then t1 to t2, and so on…

vi (tn+1) ≈ vi (tn) + Δt mi−1 fij (tn)

xi (tn+1) ≈ xi (tn) + Δt vi (tn+1)

Tradeoff: Smaller Δt → more accurate, but more computation
to reach any desired t.

dxi

dt
dvi

dt ∑

∑

W
itkin &

 B
araff 2001

How to model a rectangular sheet of cloth?

• Structural springs

How to model a rectangular sheet of cloth?

• Structural springs

• Shear springs

How to model a rectangular sheet of cloth?

• Structural springs

• Shear springs

• Bending springs

How to model a rectangular sheet of cloth?

• Structural springs

• Shear springs

• Bending springs

Skeel Lee

https://www.youtube.com/watch?v=L4oFuXovsrM

https://www.youtube.com/watch?v=L4oFuXovsrM

Skeel Lee

https://www.youtube.com/watch?v=RMqgajfZSvY

https://www.youtube.com/watch?v=RMqgajfZSvY

Skeel Leehttps://www.youtube.com/watch?v=JncQOCg9FS0

https://www.youtube.com/watch?v=JncQOCg9FS0

H
en

rik
 W

an
n

Je
ns

en

The End

