Image Classification

Chetan Arora

Visual Recognition Tasks

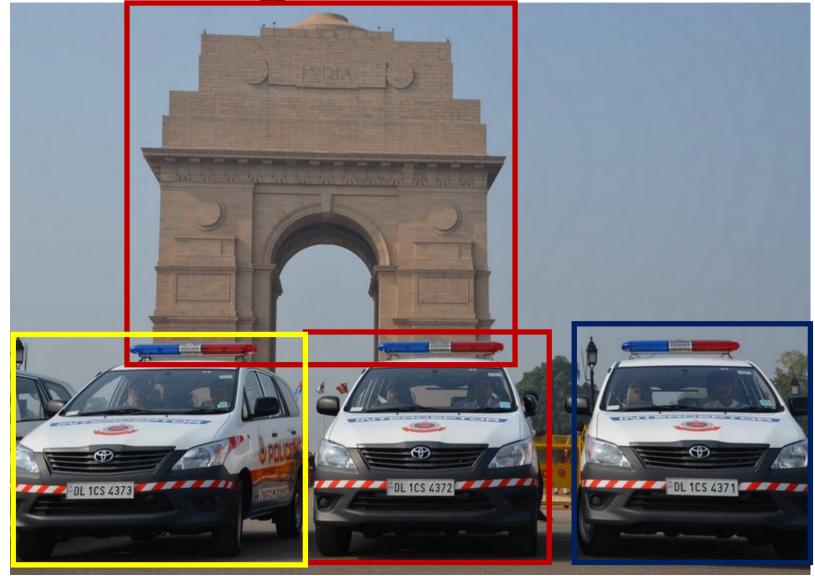
Image Classification

Is it a natural or man made scene

Is it a forest or a beach?

Does this image contains a building?

Visual Recognition Tasks



Object Detection

Does this image contain a building? [where]

Which objects does this image contains?

Visual Recognition Tasks

Instance Segmentation [pixel wise localization]

Which pixels are building?

Applications: Computational Photography

Face Detection

Dynamic Range Enhancement

Applications: Object Attributes

Police Car **Frontal View** Autonomous and Assistive

Applications: Instance Recognition

Does this image contains "India Gate"?

Recognizing landmarks in images

Recognizing products in super market

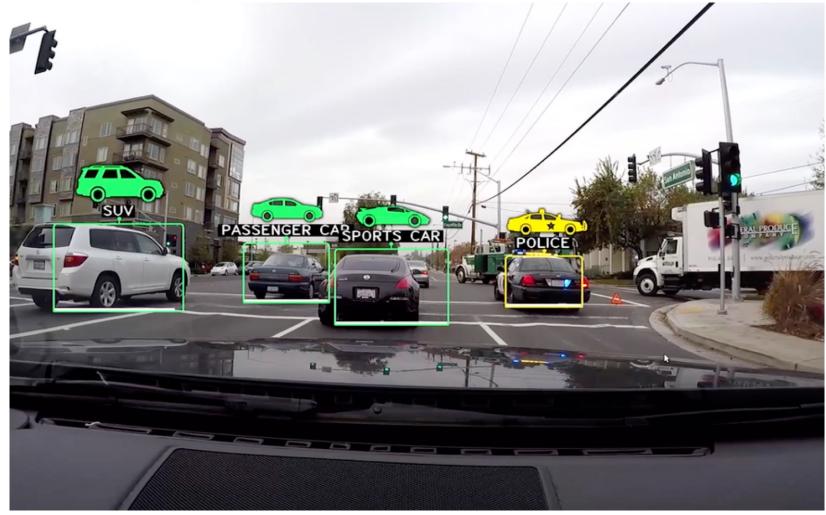
Applications: Assistive Vision

Applications: Security and Surveillance

Applications: Activity Recognition

What are these guys doing?

Autonomous Systems



http://fortune.com/2015/10/16/how-tesla-autopilot-learns/

Image Classification Challenge: Semantic Gap

- Images are represented as 3D arrays of numbers, with integers between [0, 255].
- E.g. 300 x 100 x 3 (3 for 3 color channels RGB)

20	56	12	207	12	56	12	20	207	56	207	23	125	12	12
30	78	43	255	43	78	43	30	255	78	255	34	54	43	34
26	96	U	125	27	96	0	26	125	96	125	74	24	0	26
89	78	87	168	49	78	87	89	168	78	168	24	15	87	31
54	56	65	198	63	56	65	54	198	56	198	75	125	65	156
128	45	45	187	82	45	45	128	187	45	187	25	25	45	167
45	98	98	165	63	98	98	45	165	98	165	27	156	98	145
131	67	67	193	82	67	67	134	193	67	193	28	56	67	146
235	45	23	88	76	45	23	235	88	45	88	83	32	23	158
23	145	45	22	116	145	45	23	22	145	22	5	63	45	234
24	234	244	62	139	234	214	24	62	234	62	27	43	244	43
45	65	213	104	176	65	213	45	194	65	104	42	53	213	25
23	213	154	176	174	213	154	23	176	213	176	63	63	154	25
45	54	167	187	27	54	167	45	187	54	187	72	135	167	53
67	76	195	193	26	76	195	67	193	76	193	24	246	195	63

Image Classification Challenge

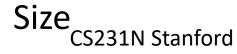
Intra class variation

Background Clutter

Deformation

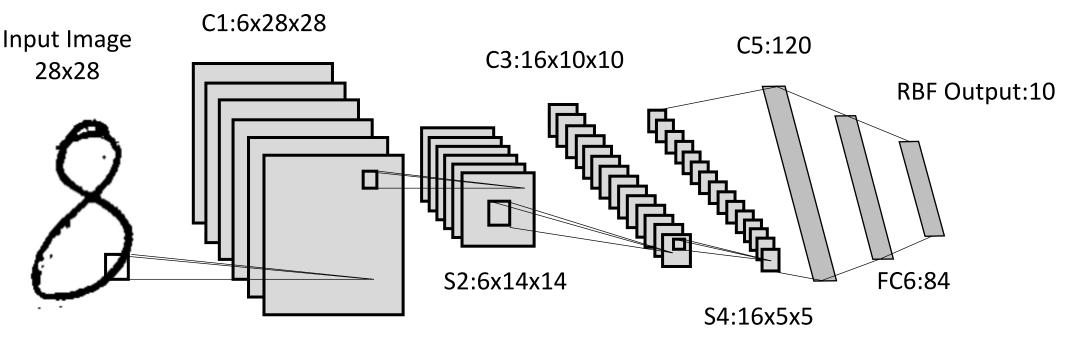
Illumination

Occlusion



LeNet5

- C1,C3,C5 : Convolutional layers. 5 × 5 Convolution matrix.
- S2, S4: Subsampling layer. Subsampling by factor 2.
- F6 : Fully connected layer.
- All the units of the layers up to FC6 have a sigmoidal activation function

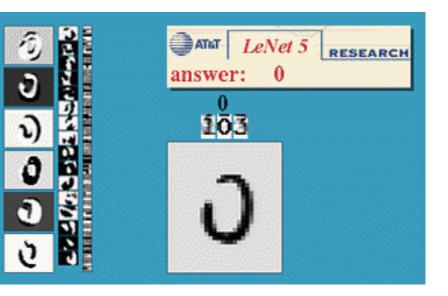


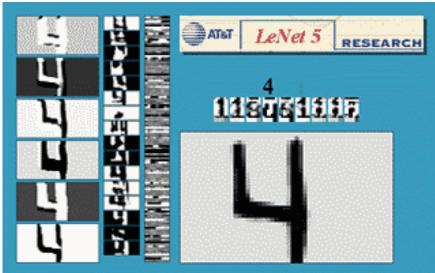
Y. LeCun, P. Haffner, L. Bottou and Y. Bengio: Object Recognition with Gradient-Based Learning. 1999

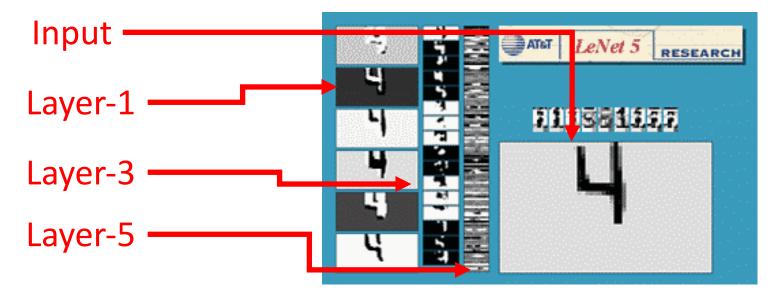


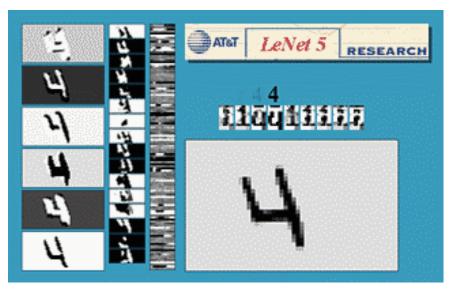
LeNet5

- About 187,000 connection.
- About 14,000 trainable weight









LeNet5

- Uses knowledge about the invariances to design:
 - the local connectivity,
 - the weight-sharing, and
 - the pooling.
- Achieves about 80 errors:
 - This can be reduced to about 40 errors by using many different transformations of the input and other tricks (Ranzato 2008)

Department of Computer Science and Engineering, IIT Delhi ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)

- 10,000,000 labelled images depicting 10,000+ object categories collected from flickr and other search engines.
- ILSVRC 2012

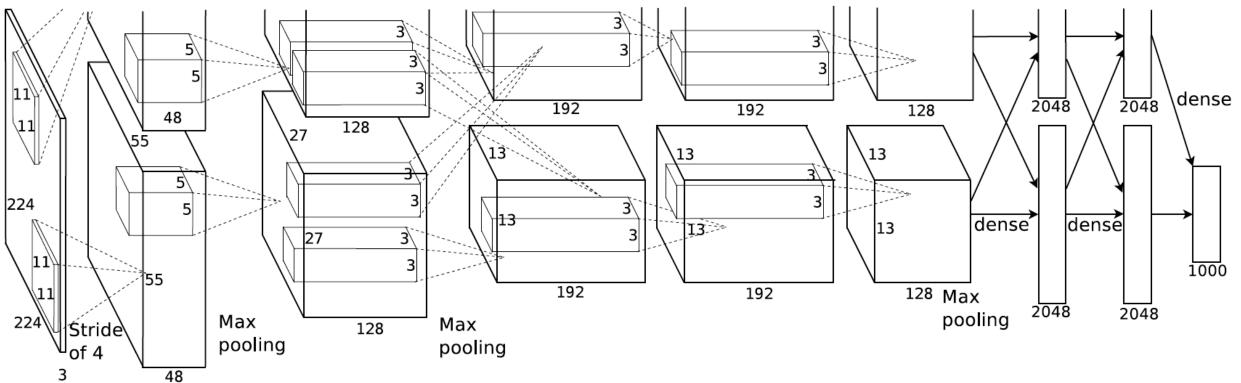
Chetan Aror

- Validation and test data of 150,000 photographs, hand labelled with 1000 object categories.
- A random subset of 50,000 of the images with labels released as validation data
- The training data, containing the 1000 categories, and 1.2 million images,
- Evaluation
 - Output a list of 5 object categories in descending order of confidence
 - Two error rates: top-1 and top-5

http://image-net.org/challenges/LSVRC/2012/

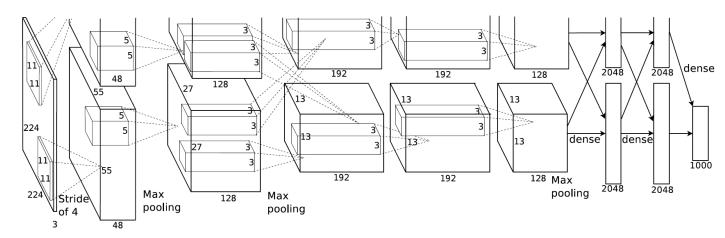
AlexNet (2012)

- 5 convolutional layers
- 3 fully connected layers
- 1000-way softmax output layer



Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton: ImageNet Classification with Deep Convolutional Neural Networks

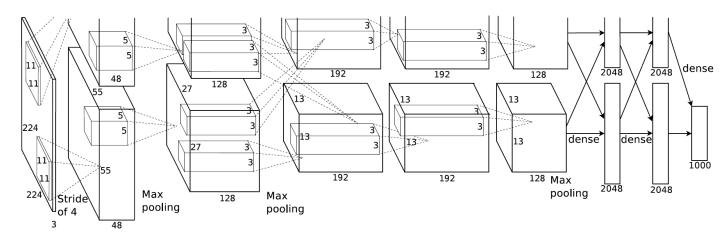
• Input: 227x227x3



• First layer (CONV1): 96 11x11 filters applied at stride 4

Q: What is the output volume size?

• Input: 227x227x3



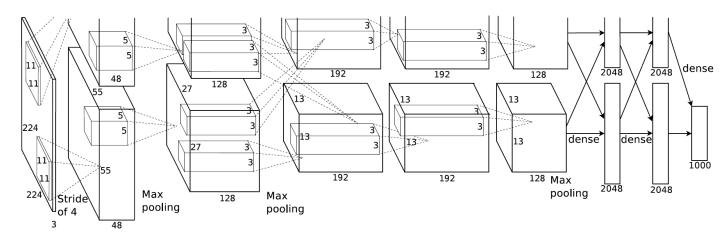
• First layer (CONV1): 96 11x11 filters applied at stride 4

Q: What is the output volume size? A: (227-11)/4+1 = 55. Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

CS231N Stanford

• Input: 227x227x3



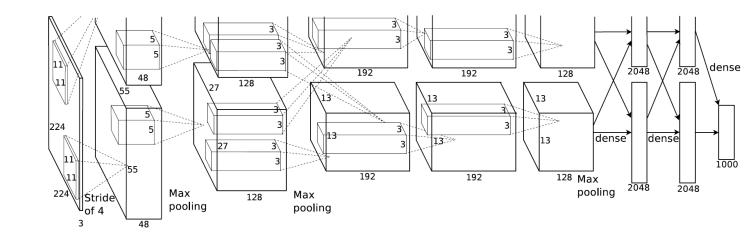
• First layer (CONV1): 96 11x11 filters applied at stride 4

Q: What is the output volume size? A: (227-11)/4+1 = 55. Output volume [55x55x96]

Q: What is the total number of parameters in this layer? A: Parameters: (11*11*3)*96 = 35K

CS231N Stanford

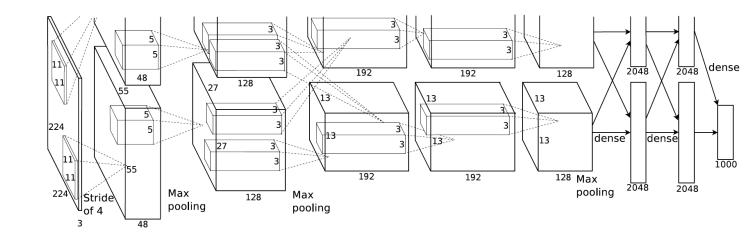
- Input: 227x227x3
- After CONV1: 55x55x96



• Second layer (POOL1): 3x3 filters applied at stride 2

Q: What is the output volume size?

- Input: 227x227x3
- After CONV1: 55x55x96

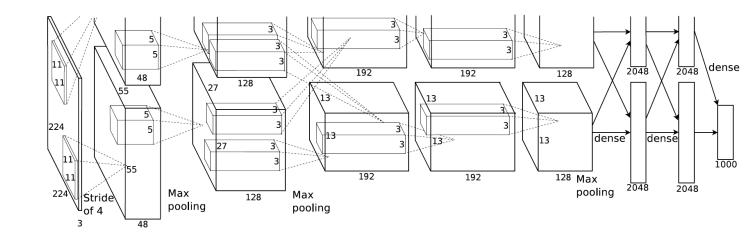


• Second layer (POOL1): 3x3 filters applied at stride 2

Q: What is the output volume size? A: (55-3)/2+1 = 27. Output volume: 27x27x96

Q: What is the number of parameters in this layer?

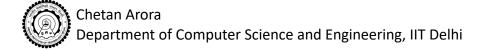
- Input: 227x227x3
- After CONV1: 55x55x96



• Second layer (POOL1): 3x3 filters applied at stride 2

Q: What is the output volume size? A: (55-3)/2+1 = 27. Output volume: 27x27x96

Q: What is the number of parameters in this layer? A: Parameters: 0!



AlexNet (2012): Key Ideas

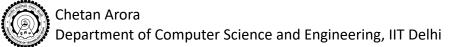
- Downsampled images
 - shorter dimension 256 pixels, longer dimension cropped about center to 256 pixels
 - R, G, B channels
- Mean subtraction from inputs

AlexNet (2012): Key Ideas

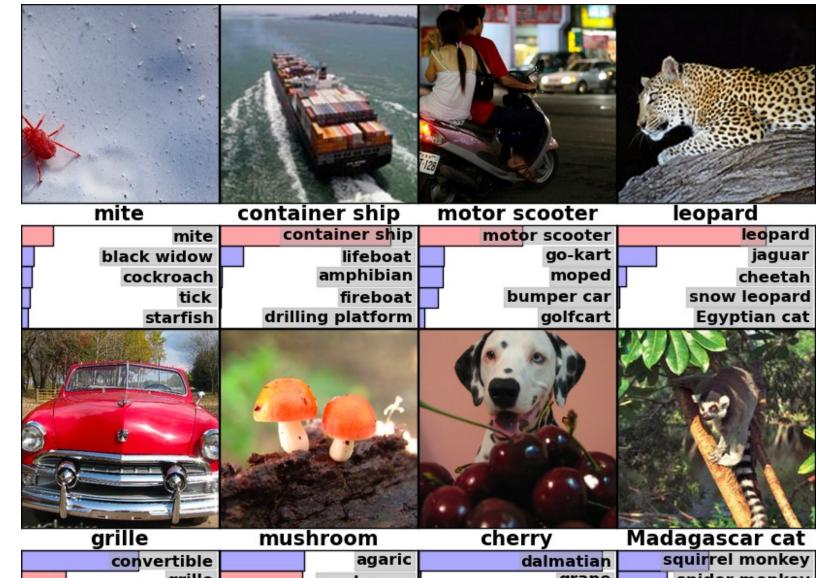
- Data set augmentation
 - Generate image translations by selecting random 224 x 224 sub-images
 - Horizontal reflections (standard trick in computer vision)
 - When testing, extract 10 distinct 224x224 sub-images and average predictions
- More data set augmentation
 - Vary intensity and color of the illumination from epoch to epoch

AlexNet (2012): Key Ideas

- ReLU instead of logistic or tanh units
- DropOut



Results



convertible	agaric	dalmatian		squirrel monkey
grille	mushroom	grape		spider monkey
pickup	jelly fungus	elderberry		titi
beach wagon	gill fungus	ffordshire bullterrier		indri
fire engine	dead-man's-fingers	currant	Т	howler monkey

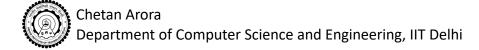
Results

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs [7]			26.2%
1 CNN	40.7%	18.2%	
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	
7 CNNs*	36.7%	15.4%	15.3%

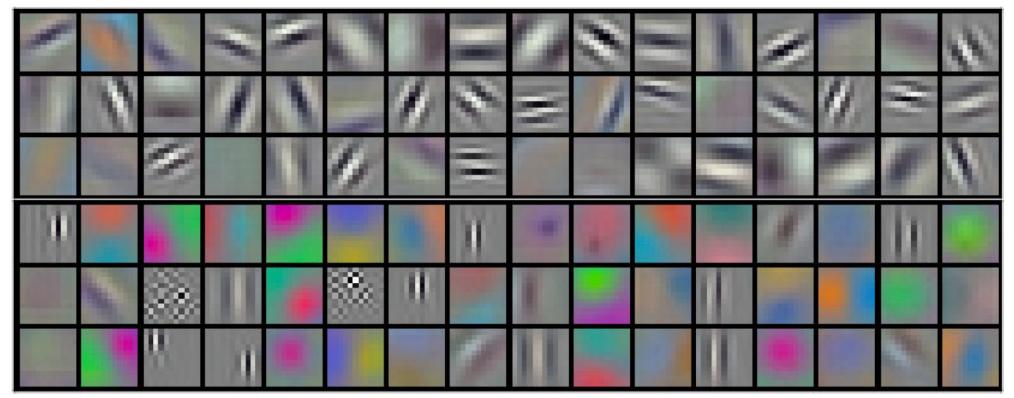
Table 1: Comparison of results on ILSVRC-2010 test set. In *italics* are best resultsachieved by others.

Table 2: Comparison of error rates on ILSVRC-2012 validation and test sets. In *italics* are best results achieved by others. Models with an asterisk* were "pre-trained" to classify the entire ImageNet 2011 Fall release. See Section 6 for details.



Visualization

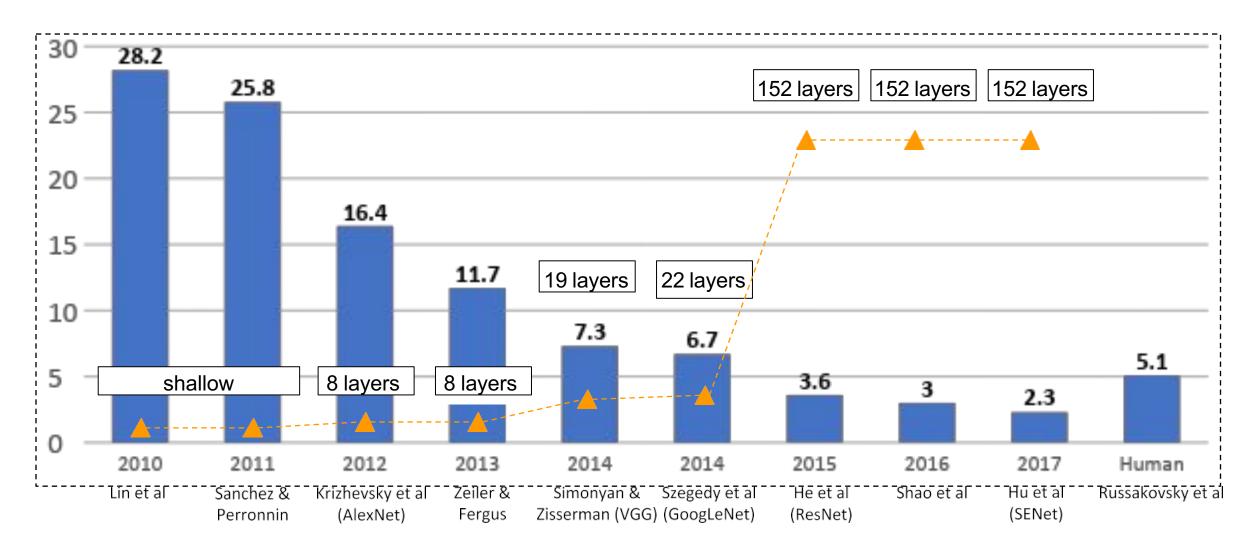
- 96 convolutional kernels of size 11X11X3 learned by the first convolutional layer on the 224X224X3 input images.
- The top 48 kernels were learned on GPU 1 while the bottom 48 kernels were learned on GPU 2



Generic Feature Vectors?

- Five ILSVRC-2010 test images in the first column.
- The remaining columns show the six training images that produce feature vectors in the last hidden layer with the smallest Euclidean distance from the feature vector for the test image.

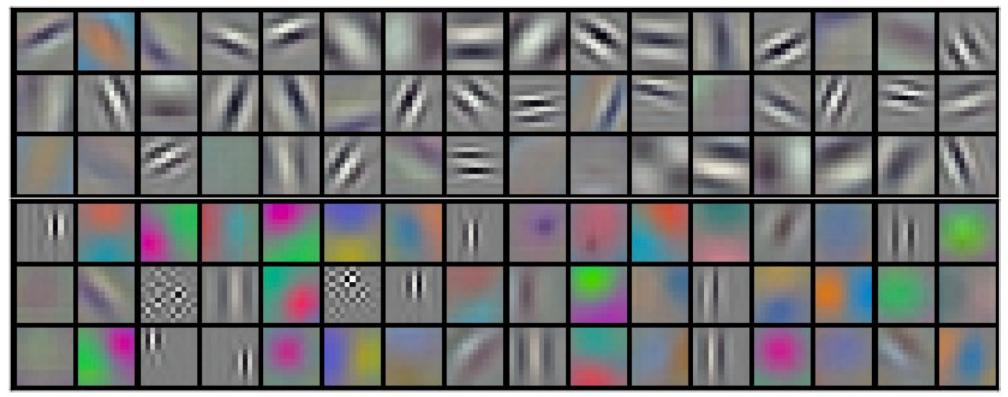
ILSVRC Winners



CS231N Stanford

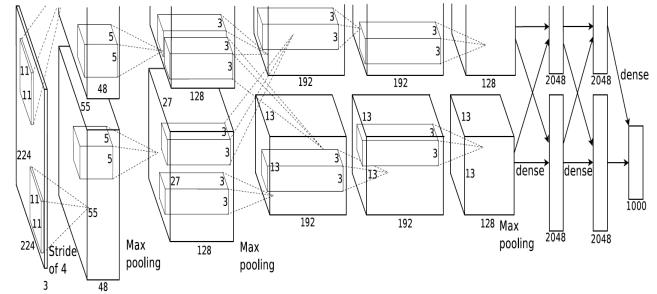
AlexNet: Some Obvious Problems

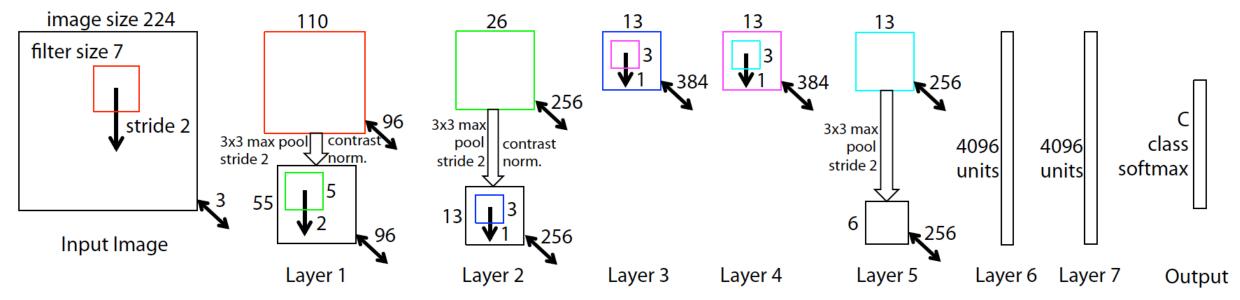
- The first layer filters are a mix of extremely high and low frequency information, with little coverage of the mid frequencies.
- 2nd layer visualization shows aliasing artefacts caused by the large stride(4) used in the 1st layer convolutions.



ZFNet

- 1st layer filter size: 11x11 to 7x7
- Stride of the convolution: 4 to 2
- Sparse connections to Dense (used in AlexNet due to the model being split across 2 GPUs)





Matthew D. Zeiler and Rob Fergus: Visualizing and Understanding Convolutional Networks

VGGNet: Key Ideas

 Rather than using relatively large receptive fields in the first conv. layers (11X11 with stride 4 in AlexNet, 7X7 with stride 2 in ZFNet), use very small 3X3 receptive fields.

Advantage:

- A stack of three 3X3 conv. layers (without spatial pooling in between) has an effective receptive field of 7X7.
- Number of parameters in a conv. layer with C channel input and output: $(k \times k \times C) \times C$.
 - In a single 7X7 layer: $49 \times C^2$.
 - In three 3X3 layers: $3 \times 9 \times C^2$.
- Lesser parameters allows deeper networks.

Karen Simonyan & Andrew Zisserman: VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

VGGNet: Key Ideas

• The incorporation of 1 × 1 conv. layers

Advantage:

- Increase the nonlinearity
- No affect in the receptive fields of the conv. layers.

VGGNet

Network	A,A-LRN	В	С	D	E
Number of parameters	133	133	134	138	144

*LRN = Local Response Normalization (as in AlexNet)

ConvNet Configuration									
A	A-LRN	В	С	D	E				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers	layers	layers				
input (224×224 RGB image)									
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64				
			pool	-					
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
maxpool									
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	nv3-256 conv3-256 conv3-256		conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
			pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
conv3-									
		max	pool	_					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
			pool						
FC-4096									
FC-4096									
FC-1000									
soft-max									

Network in Network (NIN)

- The convolutional layers generate feature maps by linear convolutional filters followed by nonlinear activation functions.
- Linear convolution is sufficient for abstraction when the instances of the latent concepts are linearly separable. Achievable level of abstraction is low.

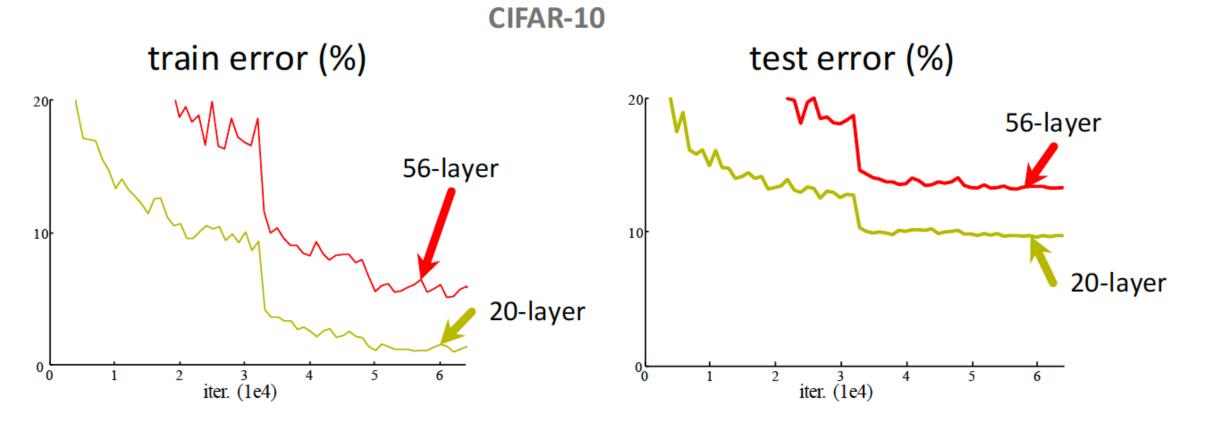
Key Idea:

- It is beneficial to do a better abstraction on each local patch, before combining them into higher level concepts.
- Replaced a convolution with a "micro network" structure which is a better/more general nonlinear function approximator.

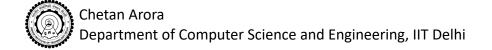
Min Lin, Qiang Chen, and Shuicheng Yan: Network In Network

Deeper Networks

- Stacking 3x3 conv layers.
- 56-layer net has higher training error and test error than 20-layer net



Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016



Deeper Networks

- The degradation is not caused by overfitting (training error is also high)
- The degradation indicates that not all systems are similarly easy to optimize.

Shallow \rightarrow Deep

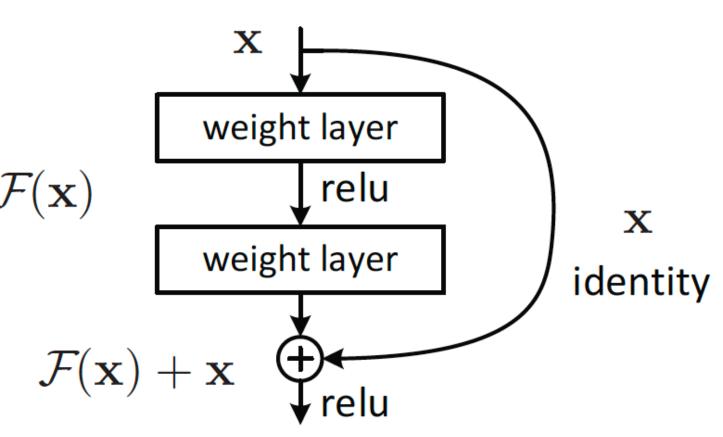
- Consider a shallower architecture and its deeper counterpart that adds more layers onto it.
- There exists a solution by construction to the deeper model: the added layers are identity mapping. Other layers are copied from the learned shallower model.

Residual Learning

- Instead of hoping each few stacked layers directly fit a desired underlying mapping, explicitly let these layers fit a residual mapping.
- Denoting the desired underlying mapping as H(x). The stacked nonlinear layers fit another mapping:

$$F(x) = H(x) - x$$

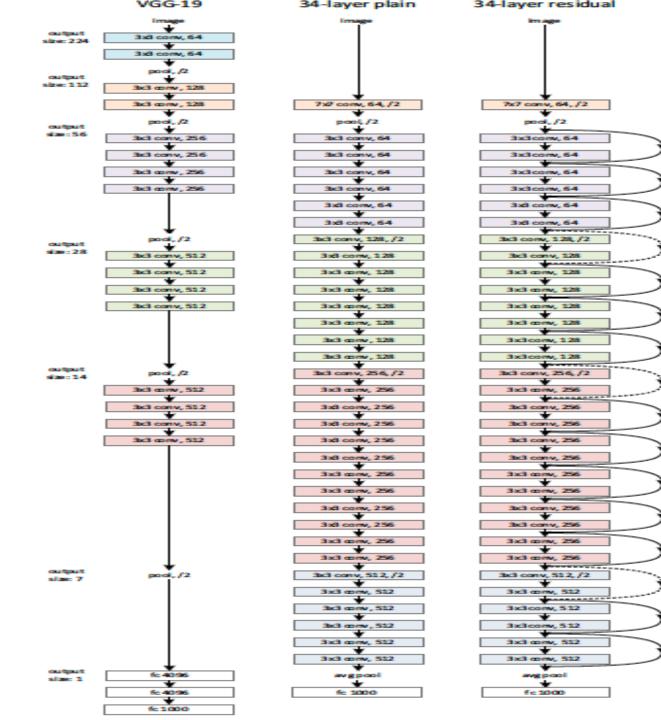
• The original mapping is recast into F(x) + x.

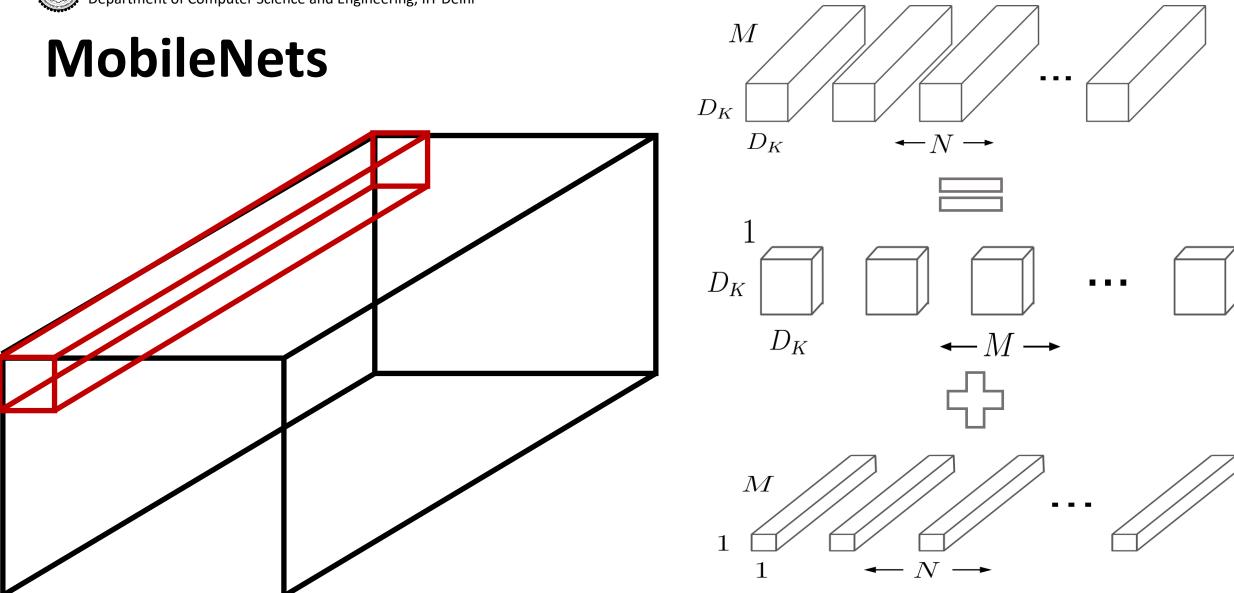


Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016

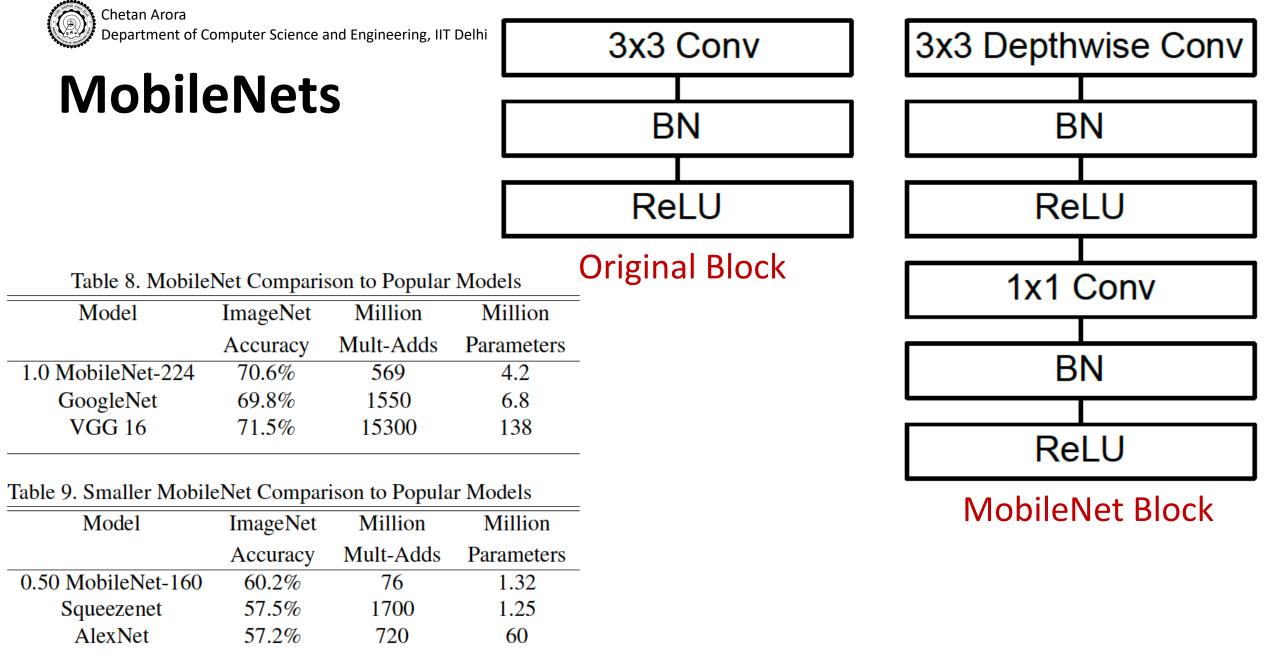
ResNet

- Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun.
 "Deep Residual Learning for Image Recognition". CVPR 2016
- Stack residual learning modules





A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. ArXiv 2017



Andrew G. Howard Menglong Zhu Bo Chen Dmitry Kalenichenko

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications